Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2024, Vol. 18 Issue (6) : 186332    https://doi.org/10.1007/s11704-023-3200-z
RESEARCH ARTICLE
Rts: learning robustly from time series data with noisy label
Zhi ZHOU, Yi-Xuan JIN, Yu-Feng LI()
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
 Download: PDF(9109 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Significant progress has been made in machine learning with large amounts of clean labels and static data. However, in many real-world applications, the data often changes with time and it is difficult to obtain massive clean annotations, that is, noisy labels and time series are faced simultaneously. For example, in product-buyer evaluation, each sample records the daily time behavior of users, but the long transaction period brings difficulties to analysis, and salespeople often erroneously annotate the user’s purchase behavior. Such a novel setting, to our best knowledge, has not been thoroughly studied yet, and there is still a lack of effective machine learning methods. In this paper, we present a systematic approach RTS both theoretically and empirically, consisting of two components, Noise-Tolerant Time Series Representation and Purified Oversampling Learning. Specifically, we propose reducing label noise’s destructive impact to obtain robust feature representations and potential clean samples. Then, a novel learning method based on the purified data and time series oversampling is adopted to train an unbiased model. Theoretical analysis proves that our proposal can improve the quality of the noisy data set. Empirical experiments on diverse tasks, such as the house-buyer evaluation task from real-world applications and various benchmark tasks, clearly demonstrate that our new algorithm robustly outperforms many competitive methods.

Keywords weakly-supervised learning      time-series classification      class-imbalanced learning     
Corresponding Author(s): Yu-Feng LI   
Just Accepted Date: 12 July 2023   Issue Date: 21 September 2023
 Cite this article:   
Zhi ZHOU,Yi-Xuan JIN,Yu-Feng LI. Rts: learning robustly from time series data with noisy label[J]. Front. Comput. Sci., 2024, 18(6): 186332.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-023-3200-z
https://academic.hep.com.cn/fcs/EN/Y2024/V18/I6/186332
Fig.1  Here, τ is the label noise rate and we set the number of classes K to 5 for presentation. (a) Noise transition matrix for symmetrical label noise; (b) noise transition matrix for asymmetric label noise
Fig.2  Performance gap of different algorithms when compared with Oracle (the performance obtained on the clean data set). The result shows that improved small-loss criterion can lead to significant performance improvements
  
Fig.3  The overall of proposed RTS approach
Methods Accuracy G-Mean F1 Score AUROC
CE 0.560±0.011 0.564±0.011 0.464±0.019 0.692±0.018
SMOTE 0.605±0.015 0.608±0.015 0.543±0.024 0.739±0.021
LDAM 0.658±0.016 0.661±0.015 0.624±0.022 0.695±0.053
SIGUA 0.561±0.016 0.565±0.016 0.464±0.029 0.686±0.023
INOS 0.596±0.021 0.599±0.021 0.528±0.036 0.721±0.014
SREA 0.496±0.000 0.500±0.000 0.331±0.000 0.535±0.086
CWSL 0.741±0.032 0.739±0.033 0.727±0.040 0.831±0.025
INOS+SREA 0.541±0.003 0.544±0.003 0.431±0.007 0.541±0.020
RTS 0.762±0.010 0.764±0.010 0.752±0.012 0.865±0.008
Tab.1  Results (mean ± std) on Beike real-world data set. The best performance is in bold and the result show that our method gives the best performance against all comparison methods on real-world task
Data set Size Length # Classes IR
ECG5000 5000 140 5 121.63
Distal. 539 80 3 7.16
Electr. 16637 96 7 3.41
Tab.2  UCR data set description
Fig.4  The performance of all methods on ECG5000, Distal Phalanx Outline Age Group and Electric Devices data sets with different noise patterns. (a) ECG5000 data set with symmetrical label noise; (b) Distal Phalanx Outline Age Group data set with symmetrical label noise; (c) ElectricDevices data set with symmetrical label noise; (d) ECG5000 data set with asymmetric label noise; (e) Distal Phalanx Outline Age Group data set with asymmetric label noise; (f) Electric Devices data set with asymmetric label noise
Methods Balanced accuracy G-Mean F1 Score
CE 0 0 2
SMOTE 0 0 0
LDAM 2 2 0
SIGUA 0 0 1
INOS 0 0 0
SREA 0 0 0
CWSL 1 1 0
INOS+SREA 2 2 4
RTS 22 22 20
Tab.3  Wins of each method evaluated on all experimental settings
Fig.5  The AUROC of identifying different label noises on ECG5000 data set with different noise rate τ. Label smoothing always benefits the performance of selecting noisy samples. (a) AUROC of identifying symmetrical label noise; (b) AUROC of identifying asymmetric label noise
Fig.6  Influence of hyper-parameter s with different label noises on ECG5000 data set. RTS is robust to s and can achieve performance gains with label smoothing. (a) Influence of hyper-parameter s with symmetrical label noise; (b) influence of hyper-parameter s with asymmetric label noise
Fig.7  The results show that our proposal is robust to β
Fig.8  The results show that our proposal is robust to λ and Noise Samples Utilization is useful
Fig.9  Influence of the number of epoch for warmup
Fig.10  Performance comparison between RTS and two single modules. The best performance can only be obtained by combining the two parts in most cases. (a) Ablation study on ECG5000 data set with symmetrical label noise; (b) ablation study on ECG5000 data set with asymmetric label noise
Fig.11  Visualization of feature representations for CE and RTS, respectively. As the label noise rate increases, the feature representations obtained by the CE gradually degenerate, and the feature representations of our RTS approach are robust. (a) Feature representations visualization of CE method with no label noise; (b) feature representations visualization of CE method with 40% label noise; (c) feature representations visualization of CE method with 80% label noise; (d) feature representations visualization of RTS approach with no label noise; (e) feature representations visualization of RTS approach with 40% label noise; (f) feature representations visualization of RTS approach with 80% label noise
Methods Symm. 20% Symm. 40% Symm. 60% Symm. 80%
CE 21.0 21.2 21.1 21.0
SMOTE 43.7 38.0 32.7 26.9
LDAM 22.3 22.2 22.1 22.3
SIGUA 25.7 25.7 25.8 25.7
INOS 180.3 109.1 76.0 44.1
SREA 42.9 43.0 43.0 43.0
CWSL 35.3 35.3 35.3 35.3
INOS+SREA 232.7 154.1 113.5 73.5
RTS 81.1 69.5 59.4 44.3
Tab.4  The running time of each method
  
  
  
Datasets Noise % SREA INOS+SREA ROS+SREA SMOTE+SREA RTS
ECG5000 ? 0 0.483±0.009 0.589±0.020 0.583±0.019 0.590±0.022 0.587±0.019
Symm 20 0.456±0.037 0.571±0.022 0.564±0.014 0.544±0.011 0.558±0.018
Symm 40 0.494±0.060 0.500±0.056 0.552±0.053 0.478±0.011 0.480±0.010
Symm 60 0.383±0.000 0.457±0.039 0.434±0.044 0.429±0.061 0.469±0.014
Symm 80 0.383±0.001 0.378±0.002 0.230±0.178 0.304±0.145 0.386±0.028
Asymm 10 0.459±0.039 0.546±0.012 0.580±0.014 0.548±0.016 0.585±0.023
Asymm 20 0.474±0.002 0.504±0.014 0.507±0.008 0.490±0.012 0.556±0.025
Asymm 30 0.455±0.039 0.496±0.017 0.309±0.020 0.334±0.042 0.526±0.004
Asymm 40 0.454±0.038 0.492±0.024 0.284±0.009 0.272±0.011 0.420±0.016
Distal. ? 0 0.680±0.138 0.851±0.011 0.777±0.056 0.806±0.036 0.839±0.020
Symm 20 0.546±0.002 0.814±0.017 0.855±0.028 0.726±0.148 0.830±0.014
Symm 40 0.546±0.002 0.783±0.014 0.609±0.126 0.601±0.108 0.767±0.035
Symm 60 0.547±0.000 0.715±0.116 0.423±0.062 0.516±0.062 0.751±0.060
Symm 80 0.338±0.118 0.452±0.198 0.315±0.241 0.392±0.000 0.651±0.046
Asymm 10 0.547±0.000 0.737±0.043 0.832±0.018 0.845±0.029 0.826±0.037
Asymm 20 0.547±0.000 0.668±0.007 0.604±0.114 0.595±0.096 0.821±0.029
Asymm 30 0.547±0.000 0.655±0.105 0.309±0.119 0.488±0.119 0.786±0.028
Asymm 40 0.547±0.000 0.561±0.028 0.250±0.000 0.250±0.000 0.703±0.132
Electr. ? 0 0.753±0.007 0.719±0.082 0.808±0.008 0.793±0.003 0.837±0.003
Symm 20 0.612±0.117 0.586±0.018 0.778±0.012 0.775±0.011 0.832±0.003
Symm 40 0.546±0.040 0.618±0.013 0.725±0.015 0.639±0.110 0.797±0.005
Symm 60 0.262±0.064 0.485±0.086 0.365±0.067 0.358±0.103 0.714±0.004
Symm 80 0.083±0.050 0.101±0.068 0.103±0.056 0.086±0.049 0.508±0.011
Asymm 10 0.690±0.073 0.568±0.043 0.796±0.005 0.779±0.002 0.834±0.002
Asymm 20 0.660±0.064 0.604±0.072 0.788±0.009 0.775±0.005 0.835±0.002
Asymm 30 0.608±0.070 0.579±0.072 0.777±0.017 0.772±0.005 0.790±0.006
Asymm 40 0.401±0.178 0.358±0.006 0.482±0.047 0.422±0.050 0.712±0.007
Win / Total ? ? 0 / 27 4 / 27 2 / 27 2 / 27 19 / 27
  Table A1 Experiments by combining SREA with different oversampling methods evaluated by Macro F1 score
Datasets Noise % SREA INOS+SREA ROS+SREA SMOTE+SREA RTS
ECG5000 ? 0 0.680±0.004 0.751±0.012 0.737±0.011 0.746±0.013 0.763±0.011
Symm 20 0.664±0.020 0.730±0.015 0.749±0.009 0.735±0.004 0.774±0.017
Symm 40 0.689±0.042 0.692±0.026 0.736±0.031 0.686±0.012 0.724±0.017
Symm 60 0.625±0.001 0.674±0.035 0.648±0.024 0.650±0.033 0.722±0.020
Symm 80 0.619±0.005 0.617±0.005 0.518±0.114 0.570±0.085 0.643±0.042
Asymm 10 0.667±0.021 0.717±0.005 0.742±0.014 0.736±0.011 0.772±0.014
Asymm 20 0.674±0.003 0.694±0.011 0.718±0.006 0.707±0.010 0.764±0.021
Asymm 30 0.663±0.025 0.687±0.013 0.601±0.019 0.604±0.022 0.738±0.013
Asymm 40 0.664±0.024 0.705±0.039 0.570±0.018 0.553±0.015 0.657±0.018
Distal. ? 0 0.796±0.070 0.888±0.003 0.854±0.042 0.883±0.014 0.887±0.010
Symm 20 0.730±0.003 0.869±0.007 0.893±0.022 0.824±0.078 0.892±0.015
Symm 40 0.730±0.003 0.861±0.012 0.762±0.065 0.760±0.059 0.857±0.022
Symm 60 0.731±0.000 0.816±0.064 0.717±0.007 0.727±0.007 0.854±0.020
Symm 80 0.572±0.123 0.696±0.128 0.632±0.134 0.713±0.000 0.785±0.040
Asymm 10 0.731±0.000 0.811±0.023 0.883±0.005 0.890±0.018 0.892±0.014
Asymm 20 0.731±0.000 0.776±0.004 0.759±0.055 0.754±0.047 0.894±0.010
Asymm 30 0.731±0.000 0.778±0.051 0.533±0.099 0.682±0.099 0.870±0.009
Asymm 40 0.731±0.000 0.736±0.010 0.484±0.000 0.484±0.000 0.799±0.070
Electr. ? 0 0.854±0.005 0.834±0.045 0.893±0.005 0.883±0.001 0.907±0.001
Symm 20 0.775±0.060 0.755±0.013 0.872±0.007 0.871±0.005 0.906±0.002
Symm 40 0.735±0.018 0.777±0.008 0.838±0.008 0.786±0.057 0.887±0.003
Symm 60 0.559±0.052 0.696±0.051 0.618±0.046 0.624±0.066 0.837±0.002
Symm 80 0.375±0.050 0.398±0.060 0.393±0.053 0.380±0.048 0.701±0.010
Asymm 10 0.819±0.039 0.749±0.026 0.885±0.003 0.876±0.004 0.907±0.001
Asymm 20 0.799±0.036 0.768±0.041 0.879±0.003 0.869±0.006 0.909±0.001
Asymm 30 0.772±0.036 0.755±0.037 0.869±0.012 0.865±0.005 0.886±0.003
Asymm 40 0.638±0.113 0.611±0.005 0.707±0.033 0.664±0.033 0.839±0.004
Win / Total ? ? 0 / 27 3 / 27 2 / 27 0 / 27 22 / 27
  Table A2 Experiments by combining SREA with different oversampling methods evaluated by Macro G-Mean
Datasets Noise % SREA INOS+SREA ROS+SREA SMOTE+SREA RTS
ECG5000 ? 0 0.471±0.006 0.573±0.018 0.553±0.017 0.566±0.020 0.592±0.018
Symm 20 0.450±0.027 0.542±0.022 0.574±0.014 0.554±0.006 0.613±0.027
Symm 40 0.486±0.059 0.489±0.037 0.552±0.045 0.481±0.017 0.543±0.026
Symm 60 0.399±0.000 0.467±0.048 0.431±0.030 0.432±0.043 0.543±0.029
Symm 80 0.395±0.004 0.391±0.005 0.304±0.102 0.351±0.075 0.446±0.052
Asymm 10 0.454±0.028 0.523±0.007 0.560±0.021 0.552±0.017 0.607±0.022
Asymm 20 0.463±0.004 0.492±0.014 0.529±0.008 0.516±0.014 0.600±0.032
Asymm 30 0.449±0.030 0.482±0.018 0.395±0.025 0.395±0.026 0.564±0.020
Asymm 40 0.451±0.030 0.511±0.055 0.355±0.022 0.334±0.017 0.465±0.023
Distal. ? 0 0.699±0.113 0.851±0.005 0.796±0.071 0.847±0.021 0.850±0.017
Symm 20 0.593±0.004 0.819±0.012 0.858±0.037 0.747±0.126 0.861±0.027
Symm 40 0.593±0.004 0.807±0.022 0.645±0.105 0.643±0.096 0.803±0.037
Symm 60 0.595±0.000 0.734±0.106 0.603±0.004 0.597±0.004 0.801±0.029
Symm 80 0.440±0.131 0.593±0.154 0.513±0.149 0.605±0.000 0.687±0.067
Asymm 10 0.595±0.000 0.721±0.038 0.843±0.007 0.854±0.030 0.862±0.021
Asymm 20 0.595±0.000 0.665±0.005 0.640±0.089 0.632±0.074 0.864±0.014
Asymm 30 0.595±0.000 0.669±0.081 0.378±0.109 0.541±0.109 0.823±0.016
Asymm 40 0.595±0.000 0.603±0.015 0.324±0.000 0.324±0.000 0.708±0.105
Electr. ? 0 0.754±0.008 0.721±0.072 0.819±0.007 0.803±0.002 0.842±0.002
Symm 20 0.632±0.091 0.597±0.020 0.785±0.012 0.784±0.007 0.841±0.002
Symm 40 0.572±0.026 0.632±0.011 0.730±0.013 0.651±0.085 0.808±0.005
Symm 60 0.345±0.062 0.517±0.071 0.415±0.058 0.426±0.085 0.729±0.002
Symm 80 0.165±0.044 0.185±0.052 0.180±0.046 0.169±0.042 0.530±0.014
Asymm 10 0.698±0.062 0.589±0.039 0.806±0.005 0.792±0.006 0.843±0.003
Asymm 20 0.667±0.056 0.620±0.064 0.797±0.005 0.781±0.009 0.845±0.002
Asymm 30 0.627±0.055 0.600±0.057 0.780±0.018 0.773±0.007 0.808±0.005
Asymm 40 0.449±0.152 0.402±0.006 0.532±0.042 0.477±0.042 0.734±0.006
Win / Total ? ? 0 / 27 3 / 27 1 / 27 0 / 27 23 / 27
  Table A3 Experiments by combining SREA with different oversampling methods evaluated by Balanced Accuracy
Datasets Noise % CE SMOTE LDAM SIGUA INOS SREA CWSL RTS
ECG5000 ? 0 0.750±0.011 0.749±0.013 0.746±0.017 0.729±0.004 0.748±0.012 0.680±0.004 0.741±0.015 0.763±0.011
Symm 20 0.731±0.006 0.715±0.012 0.703±0.017 0.730±0.006 0.739±0.008 0.664±0.020 0.660±0.019 0.774±0.017
Symm 40 0.674±0.023 0.674±0.009 0.639±0.023 0.706±0.017 0.678±0.016 0.689±0.042 0.656±0.015 0.724±0.017
Symm 60 0.623±0.022 0.596±0.013 0.582±0.031 0.628±0.014 0.624±0.020 0.625±0.001 0.633±0.042 0.722±0.020
Symm 80 0.513±0.012 0.480±0.040 0.507±0.029 0.611±0.008 0.539±0.042 0.619±0.005 0.656±0.035 0.643±0.042
Asymm 10 0.722±0.013 0.724±0.010 0.710±0.009 0.725±0.014 0.717±0.005 0.667±0.021 0.725±0.037 0.772±0.014
Asymm 20 0.687±0.012 0.663±0.020 0.670±0.019 0.717±0.012 0.709±0.007 0.674±0.003 0.717±0.029 0.764±0.021
Asymm 30 0.643±0.021 0.616±0.032 0.618±0.019 0.692±0.008 0.649±0.016 0.663±0.025 0.658±0.016 0.738±0.013
Asymm 40 0.560±0.022 0.546±0.035 0.547±0.016 0.646±0.018 0.558±0.018 0.664±0.024 0.630±0.026 0.657±0.018
Distal Phalanx Outline Age Group ? 0 0.857±0.028 0.881±0.028 0.889±0.010 0.834±0.023 0.874±0.019 0.796±0.070 0.791±0.082 0.887±0.010
Symm 20 0.834±0.034 0.753±0.023 0.825±0.043 0.841±0.021 0.801±0.030 0.730±0.003 0.680±0.076 0.892±0.015
Symm 40 0.705±0.035 0.691±0.035 0.739±0.037 0.734±0.039 0.746±0.022 0.730±0.003 0.614±0.080 0.857±0.022
Symm 60 0.640±0.051 0.639±0.052 0.703±0.038 0.667±0.046 0.669±0.030 0.731±0.000 0.555±0.051 0.854±0.020
Symm 80 0.585±0.025 0.559±0.058 0.570±0.019 0.716±0.031 0.585±0.034 0.572±0.123 0.569±0.047 0.785±0.040
Asymm 10 0.818±0.023 0.753±0.047 0.837±0.007 0.834±0.038 0.811±0.016 0.731±0.000 0.695±0.118 0.892±0.014
Asymm 20 0.765±0.035 0.714±0.026 0.803±0.054 0.807±0.045 0.763±0.025 0.731±0.000 0.598±0.064 0.894±0.010
Asymm 30 0.707±0.025 0.652±0.040 0.667±0.044 0.698±0.014 0.720±0.058 0.731±0.000 0.619±0.038 0.870±0.009
Asymm 40 0.631±0.043 0.587±0.018 0.607±0.093 0.582±0.086 0.590±0.028 0.731±0.000 0.536±0.048 0.799±0.070
Electric Devices ? 0 0.919±0.002 0.918±0.001 0.920±0.001 0.916±0.003 0.919±0.002 0.854±0.005 0.888±0.006 0.907±0.001
Symm 20 0.870±0.007 0.860±0.005 0.894±0.002 0.884±0.002 0.864±0.004 0.775±0.060 0.850±0.003 0.906±0.002
Symm 40 0.797±0.006 0.786±0.003 0.826±0.005 0.835±0.015 0.793±0.005 0.735±0.018 0.803±0.004 0.887±0.003
Symm 60 0.689±0.002 0.686±0.005 0.729±0.005 0.782±0.005 0.682±0.008 0.559±0.052 0.731±0.013 0.837±0.002
Symm 80 0.547±0.006 0.541±0.008 0.570±0.020 0.524±0.064 0.553±0.009 0.375±0.050 0.630±0.009 0.701±0.010
Asymm 10 0.889±0.004 0.881±0.005 0.900±0.002 0.894±0.001 0.885±0.004 0.819±0.039 0.866±0.006 0.907±0.001
Asymm 20 0.854±0.010 0.841±0.008 0.872±0.004 0.872±0.004 0.846±0.007 0.799±0.036 0.840±0.013 0.909±0.001
Asymm 30 0.784±0.015 0.781±0.011 0.808±0.006 0.830±0.012 0.786±0.016 0.772±0.036 0.812±0.005 0.886±0.003
Asymm 40 0.729±0.011 0.710±0.009 0.722±0.008 0.762±0.011 0.718±0.013 0.638±0.113 0.774±0.016 0.839±0.004
MedicalImages ? 0 0.907±0.013 0.912±0.007 0.911±0.006 0.910±0.008 0.905±0.010 0.767±0.048 0.859±0.015 0.886±0.006
Symm 20 0.808±0.020 0.777±0.012 0.827±0.008 0.852±0.018 0.800±0.017 0.612±0.029 0.822±0.012 0.884±0.006
Symm 40 0.729±0.015 0.675±0.011 0.696±0.015 0.748±0.015 0.714±0.021 0.335±0.020 0.761±0.022 0.820±0.023
Symm 60 0.561±0.033 0.564±0.031 0.574±0.014 0.638±0.020 0.572±0.025 0.300±0.000 0.704±0.011 0.703±0.012
Symm 80 0.473±0.019 0.448±0.027 0.472±0.021 0.535±0.040 0.485±0.033 0.300±0.000 0.665±0.027 0.618±0.038
Asymm 10 0.859±0.018 0.846±0.019 0.851±0.014 0.855±0.015 0.859±0.015 0.730±0.030 0.834±0.013 0.858±0.004
Asymm 20 0.810±0.017 0.803±0.011 0.813±0.013 0.805±0.009 0.805±0.018 0.680±0.018 0.802±0.018 0.847±0.003
Asymm 30 0.782±0.015 0.770±0.017 0.786±0.009 0.795±0.013 0.776±0.007 0.516±0.149 0.796±0.021 0.803±0.013
Asymm 40 0.733±0.012 0.724±0.011 0.740±0.016 0.733±0.013 0.732±0.022 0.608±0.052 0.791±0.010 0.743±0.018
FacesUCR ? 0 0.996±0.001 0.996±0.005 0.997±0.001 0.992±0.005 0.996±0.001 0.992±0.002 0.952±0.009 0.983±0.003
Symm 20 0.913±0.008 0.910±0.003 0.943±0.007 0.957±0.003 0.927±0.010 0.987±0.002 0.915±0.007 0.987±0.002
Symm 40 0.837±0.007 0.842±0.015 0.874±0.008 0.936±0.004 0.841±0.004 0.971±0.001 0.875±0.013 0.973±0.005
Symm 60 0.715±0.023 0.719±0.015 0.737±0.006 0.853±0.008 0.703±0.011 0.754±0.209 0.797±0.018 0.894±0.004
Symm 80 0.518±0.017 0.513±0.009 0.543±0.019 0.676±0.018 0.527±0.005 0.572±0.229 0.658±0.018 0.691±0.011
Asymm 10 0.952±0.003 0.951±0.005 0.967±0.001 0.984±0.006 0.950±0.006 0.990±0.001 0.933±0.003 0.988±0.002
Asymm 20 0.909±0.009 0.901±0.007 0.921±0.007 0.953±0.001 0.904±0.005 0.975±0.004 0.927±0.003 0.983±0.003
Asymm 30 0.820±0.004 0.820±0.008 0.852±0.008 0.898±0.006 0.830±0.016 0.967±0.010 0.898±0.003 0.956±0.003
Asymm 40 0.759±0.014 0.757±0.019 0.764±0.013 0.852±0.013 0.774±0.013 0.935±0.017 0.878±0.004 0.914±0.012
Distal Phalanx TW ? 0 0.715±0.022 0.699±0.022 0.681±0.025 0.691±0.022 0.683±0.019 0.558±0.000 0.643±0.067 0.710±0.007
Symm 20 0.630±0.043 0.616±0.016 0.648±0.008 0.634±0.045 0.665±0.031 0.558±0.000 0.589±0.096 0.712±0.019
Symm 40 0.571±0.032 0.542±0.032 0.598±0.036 0.645±0.010 0.571±0.020 0.577±0.038 0.567±0.012 0.665±0.008
Symm 60 0.487±0.043 0.445±0.035 0.501±0.018 0.556±0.024 0.508±0.045 0.555±0.002 0.495±0.031 0.562±0.046
Symm 80 0.478±0.020 0.457±0.049 0.504±0.034 0.549±0.033 0.462±0.025 0.518±0.073 0.575±0.010 0.645±0.021
Asymm 10 0.729±0.018 0.639±0.013 0.686±0.041 0.683±0.018 0.694±0.017 0.577±0.038 0.656±0.041 0.732±0.009
Asymm 20 0.639±0.026 0.600±0.027 0.695±0.039 0.648±0.017 0.671±0.015 0.577±0.038 0.555±0.040 0.757±0.017
Asymm 30 0.595±0.023 0.520±0.033 0.620±0.037 0.643±0.055 0.558±0.023 0.587±0.036 0.549±0.055 0.667±0.034
Asymm 40 0.592±0.028 0.519±0.049 0.561±0.027 0.568±0.054 0.591±0.030 0.557±0.002 0.589±0.014 0.575±0.077
Middle Phalanx TW ? 0 0.569±0.024 0.564±0.035 0.581±0.025 0.557±0.010 0.558±0.009 0.555±0.007 0.592±0.040 0.590±0.028
Symm 20 0.565±0.033 0.530±0.031 0.563±0.025 0.572±0.044 0.543±0.035 0.551±0.009 0.549±0.041 0.584±0.012
Symm 40 0.508±0.019 0.475±0.024 0.532±0.032 0.561±0.006 0.527±0.029 0.549±0.001 0.516±0.037 0.587±0.011
Symm 60 0.486±0.032 0.442±0.041 0.549±0.039 0.557±0.025 0.525±0.015 0.552±0.000 0.496±0.027 0.556±0.037
Symm 80 0.461±0.074 0.416±0.047 0.470±0.048 0.551±0.032 0.437±0.031 0.373±0.000 0.529±0.032 0.567±0.026
Asymm 10 0.566±0.023 0.579±0.017 0.619±0.024 0.569±0.030 0.551±0.022 0.556±0.005 0.568±0.029 0.578±0.018
Asymm 20 0.538±0.024 0.478±0.033 0.535±0.023 0.548±0.012 0.535±0.016 0.571±0.011 0.530±0.040 0.592±0.021
Asymm 30 0.547±0.028 0.505±0.037 0.581±0.009 0.545±0.014 0.542±0.024 0.562±0.011 0.530±0.052 0.582±0.010
Asymm 40 0.589±0.030 0.593±0.034 0.560±0.037 0.564±0.028 0.564±0.017 0.561±0.000 0.562±0.051 0.539±0.033
Win / Total ? ? 3 / 63 2 / 63 4 / 63 1 / 63 0 / 63 5 / 63 5 / 63 43 / 63
  Table B1 Results (mean ± std) on various benchmark data sets evaluated by Macro G-Mean. The best performance is bolded
Datasets Noise % CE SMOTE LDAM SIGUA INOS SREA CWSL RTS
ECG5000 ? 0 0.594±0.020 0.584±0.014 0.561±0.024 0.567±0.008 0.578±0.016 0.483±0.009 0.485±0.010 0.587±0.019
Symm 20 0.536±0.008 0.514±0.017 0.455±0.033 0.568±0.006 0.551±0.018 0.456±0.037 0.362±0.031 0.558±0.018
Symm 40 0.427±0.016 0.434±0.013 0.365±0.027 0.529±0.020 0.435±0.014 0.494±0.060 0.371±0.017 0.480±0.010
Symm 60 0.342±0.010 0.334±0.021 0.307±0.022 0.404±0.029 0.343±0.015 0.383±0.000 0.350±0.020 0.469±0.014
Symm 80 0.254±0.015 0.247±0.028 0.229±0.022 0.374±0.004 0.258±0.021 0.383±0.001 0.357±0.016 0.386±0.028
Asymm 10 0.540±0.015 0.540±0.019 0.482±0.020 0.543±0.020 0.519±0.011 0.459±0.039 0.437±0.028 0.585±0.023
Asymm 20 0.467±0.022 0.442±0.017 0.437±0.018 0.531±0.010 0.490±0.016 0.474±0.002 0.428±0.018 0.556±0.025
Asymm 30 0.416±0.024 0.387±0.037 0.368±0.011 0.484±0.017 0.412±0.012 0.455±0.039 0.386±0.028 0.526±0.004
Asymm 40 0.339±0.018 0.327±0.036 0.319±0.017 0.425±0.021 0.332±0.017 0.454±0.038 0.357±0.032 0.420±0.016
Distal Phalanx Outline Age Group ? 0 0.819±0.027 0.840±0.027 0.818±0.033 0.785±0.018 0.849±0.019 0.680±0.138 0.650±0.130 0.839±0.020
Symm 20 0.765±0.043 0.643±0.017 0.750±0.052 0.781±0.016 0.705±0.036 0.546±0.002 0.393±0.127 0.830±0.014
Symm 40 0.584±0.053 0.557±0.046 0.610±0.049 0.621±0.042 0.615±0.039 0.546±0.002 0.346±0.105 0.767±0.035
Symm 60 0.511±0.047 0.497±0.062 0.573±0.056 0.585±0.052 0.538±0.044 0.547±0.000 0.234±0.093 0.751±0.060
Symm 80 0.423±0.014 0.384±0.070 0.407±0.031 0.593±0.044 0.414±0.040 0.338±0.118 0.287±0.113 0.651±0.046
Asymm 10 0.739±0.049 0.655±0.056 0.747±0.029 0.768±0.039 0.756±0.026 0.547±0.000 0.463±0.204 0.826±0.037
Asymm 20 0.654±0.047 0.568±0.022 0.709±0.063 0.748±0.076 0.657±0.039 0.547±0.000 0.293±0.119 0.821±0.029
Asymm 30 0.560±0.019 0.512±0.043 0.515±0.055 0.616±0.032 0.585±0.068 0.547±0.000 0.302±0.033 0.786±0.028
Asymm 40 0.479±0.064 0.436±0.013 0.435±0.085 0.452±0.112 0.437±0.031 0.547±0.000 0.270±0.029 0.703±0.132
Electric Devices ? 0 0.858±0.005 0.851±0.003 0.851±0.004 0.853±0.004 0.856±0.004 0.753±0.007 0.792±0.009 0.837±0.003
Symm 20 0.770±0.013 0.750±0.009 0.805±0.005 0.797±0.005 0.761±0.007 0.612±0.117 0.721±0.006 0.832±0.003
Symm 40 0.652±0.009 0.626±0.009 0.685±0.010 0.715±0.026 0.647±0.010 0.546±0.040 0.642±0.010 0.797±0.005
Symm 60 0.497±0.004 0.482±0.012 0.537±0.005 0.632±0.006 0.479±0.016 0.262±0.064 0.537±0.023 0.714±0.004
Symm 80 0.320±0.006 0.303±0.013 0.340±0.026 0.259±0.070 0.321±0.011 0.083±0.050 0.415±0.009 0.508±0.011
Asymm 10 0.805±0.008 0.780±0.011 0.812±0.003 0.810±0.003 0.794±0.008 0.690±0.073 0.741±0.011 0.834±0.002
Asymm 20 0.745±0.016 0.716±0.017 0.760±0.006 0.775±0.006 0.731±0.013 0.660±0.064 0.697±0.020 0.835±0.002
Asymm 30 0.633±0.024 0.621±0.021 0.659±0.009 0.711±0.021 0.634±0.026 0.608±0.070 0.653±0.010 0.790±0.006
Asymm 40 0.556±0.018 0.525±0.011 0.532±0.012 0.603±0.017 0.537±0.016 0.401±0.178 0.603±0.026 0.712±0.007
MedicalImages ? 0 0.837±0.022 0.834±0.006 0.821±0.013 0.844±0.010 0.830±0.005 0.617±0.067 0.618±0.048 0.798±0.009
Symm 20 0.611±0.029 0.539±0.010 0.553±0.014 0.722±0.024 0.584±0.037 0.402±0.040 0.513±0.030 0.744±0.010
Symm 40 0.473±0.012 0.412±0.008 0.386±0.019 0.566±0.017 0.452±0.019 0.092±0.015 0.433±0.028 0.594±0.022
Symm 60 0.262±0.041 0.243±0.021 0.253±0.020 0.378±0.029 0.279±0.026 0.068±0.000 0.367±0.020 0.446±0.022
Symm 80 0.198±0.018 0.182±0.020 0.198±0.017 0.282±0.036 0.210±0.025 0.068±0.000 0.317±0.013 0.321±0.032
Asymm 10 0.756±0.022 0.728±0.019 0.698±0.021 0.755±0.024 0.735±0.033 0.571±0.039 0.595±0.039 0.753±0.007
Asymm 20 0.655±0.027 0.635±0.013 0.629±0.022 0.665±0.007 0.653±0.024 0.465±0.023 0.549±0.055 0.703±0.009
Asymm 30 0.619±0.016 0.590±0.021 0.595±0.027 0.652±0.017 0.604±0.018 0.266±0.144 0.512±0.044 0.641±0.016
Asymm 40 0.528±0.028 0.530±0.022 0.529±0.020 0.546±0.020 0.535±0.028 0.354±0.048 0.493±0.036 0.555±0.029
FacesUCR ? 0 0.987±0.002 0.987±0.008 0.989±0.002 0.981±0.009 0.986±0.002 0.974±0.005 0.896±0.018 0.959±0.005
Symm 20 0.837±0.012 0.825±0.009 0.881±0.016 0.916±0.006 0.857±0.014 0.967±0.005 0.817±0.016 0.967±0.002
Symm 40 0.692±0.016 0.689±0.021 0.746±0.014 0.878±0.009 0.699±0.018 0.936±0.003 0.750±0.018 0.940±0.009
Symm 60 0.511±0.037 0.519±0.020 0.538±0.011 0.731±0.014 0.496±0.018 0.582±0.306 0.633±0.025 0.798±0.010
Symm 80 0.272±0.019 0.270±0.010 0.299±0.024 0.467±0.020 0.285±0.008 0.361±0.277 0.442±0.014 0.482±0.013
Asymm 10 0.903±0.009 0.894±0.013 0.922±0.004 0.966±0.010 0.895±0.013 0.972±0.002 0.849±0.008 0.970±0.003
Asymm 20 0.814±0.012 0.802±0.013 0.830±0.013 0.902±0.003 0.811±0.011 0.944±0.010 0.838±0.006 0.959±0.007
Asymm 30 0.671±0.005 0.667±0.015 0.715±0.013 0.804±0.010 0.684±0.026 0.930±0.018 0.791±0.008 0.898±0.009
Asymm 40 0.582±0.022 0.575±0.024 0.587±0.018 0.736±0.022 0.601±0.018 0.877±0.031 0.759±0.008 0.819±0.019
Distal Phalanx TW ? 0 0.535±0.021 0.527±0.036 0.479±0.039 0.493±0.030 0.484±0.015 0.265±0.000 0.411±0.074 0.539±0.013
Symm 20 0.432±0.045 0.396±0.017 0.434±0.016 0.419±0.058 0.471±0.034 0.265±0.000 0.308±0.107 0.533±0.035
Symm 40 0.352±0.035 0.320±0.032 0.393±0.041 0.439±0.025 0.356±0.020 0.294±0.059 0.302±0.019 0.471±0.019
Symm 60 0.274±0.037 0.235±0.037 0.276±0.015 0.330±0.028 0.298±0.046 0.235±0.024 0.214±0.047 0.358±0.061
Symm 80 0.224±0.018 0.230±0.056 0.277±0.040 0.314±0.029 0.216±0.033 0.202±0.052 0.316±0.007 0.417±0.021
Asymm 10 0.550±0.021 0.417±0.025 0.484±0.052 0.476±0.025 0.502±0.023 0.294±0.059 0.393±0.053 0.556±0.010
Asymm 20 0.438±0.035 0.379±0.035 0.501±0.059 0.451±0.024 0.457±0.019 0.294±0.059 0.284±0.049 0.585±0.032
Asymm 30 0.362±0.031 0.294±0.030 0.414±0.053 0.418±0.067 0.334±0.032 0.313±0.059 0.285±0.083 0.458±0.038
Asymm 40 0.358±0.043 0.289±0.044 0.324±0.035 0.330±0.066 0.352±0.028 0.254±0.022 0.322±0.030 0.328±0.087
Middle Phalanx TW ? 0 0.347±0.032 0.349±0.045 0.357±0.035 0.327±0.012 0.335±0.016 0.260±0.011 0.347±0.061 0.366±0.046
Symm 20 0.339±0.033 0.313±0.031 0.337±0.025 0.344±0.051 0.320±0.046 0.235±0.021 0.298±0.051 0.357±0.016
Symm 40 0.286±0.021 0.264±0.027 0.296±0.023 0.329±0.011 0.302±0.034 0.231±0.012 0.277±0.034 0.361±0.014
Symm 60 0.256±0.035 0.227±0.041 0.320±0.051 0.320±0.031 0.303±0.014 0.255±0.000 0.249±0.033 0.317±0.036
Symm 80 0.228±0.066 0.184±0.042 0.236±0.040 0.304±0.036 0.209±0.031 0.090±0.000 0.305±0.041 0.316±0.031
Asymm 10 0.342±0.030 0.354±0.014 0.396±0.021 0.338±0.038 0.309±0.017 0.259±0.023 0.320±0.038 0.348±0.020
Asymm 20 0.321±0.034 0.266±0.021 0.306±0.028 0.320±0.017 0.307±0.015 0.275±0.028 0.283±0.053 0.366±0.030
Asymm 30 0.315±0.024 0.285±0.029 0.352±0.010 0.297±0.014 0.308±0.033 0.262±0.018 0.263±0.077 0.362±0.008
Asymm 40 0.357±0.025 0.371±0.030 0.314±0.032 0.321±0.028 0.331±0.023 0.275±0.000 0.294±0.065 0.313±0.037
Win / Total ? ? 4 / 63 1 / 63 2 / 63 5 / 63 1 / 63 5 / 63 0 / 63 45 / 63
  Table B2 Results (mean ± std) on various benchmark data sets evaluated by Macro F1 Score. The best performance is bolded
Datasets Noise % CE SMOTE LDAM SIGUA INOS SREA CWSL RTS
ECG5000 ? 0 0.572±0.017 0.571±0.020 0.569±0.026 0.541±0.005 0.570±0.018 0.471±0.006 0.573±0.026 0.592±0.018
Symm 20 0.548±0.010 0.528±0.016 0.519±0.023 0.543±0.008 0.559±0.013 0.450±0.027 0.480±0.024 0.613±0.027
Symm 40 0.483±0.035 0.480±0.012 0.446±0.027 0.510±0.024 0.484±0.024 0.486±0.059 0.470±0.017 0.543±0.026
Symm 60 0.431±0.030 0.397±0.014 0.383±0.038 0.407±0.018 0.432±0.027 0.399±0.000 0.445±0.055 0.543±0.029
Symm 80 0.305±0.014 0.271±0.041 0.302±0.033 0.387±0.007 0.341±0.054 0.395±0.004 0.474±0.048 0.446±0.052
Asymm 10 0.535±0.017 0.538±0.016 0.521±0.012 0.537±0.021 0.528±0.006 0.454±0.028 0.555±0.054 0.607±0.022
Asymm 20 0.495±0.014 0.464±0.027 0.476±0.023 0.531±0.018 0.527±0.010 0.463±0.004 0.549±0.042 0.600±0.032
Asymm 30 0.445±0.028 0.412±0.034 0.417±0.027 0.501±0.012 0.455±0.019 0.449±0.030 0.462±0.023 0.564±0.020
Asymm 40 0.352±0.026 0.333±0.032 0.337±0.019 0.449±0.022 0.352±0.021 0.451±0.030 0.431±0.032 0.465±0.023
Distal Phalanx Outline Age Group ? 0 0.800±0.040 0.851±0.031 0.857±0.016 0.766±0.032 0.842±0.022 0.699±0.113 0.746±0.091 0.850±0.017
Symm 20 0.780±0.046 0.665±0.037 0.771±0.066 0.795±0.037 0.742±0.045 0.593±0.004 0.611±0.095 0.861±0.027
Symm 40 0.590±0.047 0.587±0.047 0.634±0.045 0.633±0.064 0.663±0.033 0.593±0.004 0.511±0.088 0.803±0.037
Symm 60 0.522±0.060 0.528±0.065 0.601±0.039 0.558±0.051 0.562±0.051 0.595±0.000 0.431±0.057 0.801±0.029
Symm 80 0.463±0.027 0.444±0.069 0.440±0.015 0.609±0.045 0.468±0.046 0.440±0.131 0.448±0.055 0.687±0.067
Asymm 10 0.762±0.037 0.674±0.065 0.778±0.009 0.774±0.058 0.753±0.021 0.595±0.000 0.615±0.143 0.862±0.021
Asymm 20 0.672±0.055 0.617±0.034 0.738±0.072 0.742±0.077 0.686±0.033 0.595±0.000 0.488±0.079 0.864±0.014
Asymm 30 0.605±0.031 0.539±0.048 0.558±0.052 0.599±0.026 0.631±0.081 0.595±0.000 0.522±0.055 0.823±0.016
Asymm 40 0.523±0.041 0.461±0.025 0.495±0.112 0.472±0.113 0.468±0.036 0.595±0.000 0.398±0.069 0.708±0.105
Electric Devices ? 0 0.862±0.004 0.861±0.001 0.865±0.002 0.856±0.005 0.862±0.003 0.754±0.008 0.816±0.009 0.842±0.002
Symm 20 0.782±0.011 0.768±0.008 0.821±0.003 0.805±0.004 0.773±0.006 0.632±0.091 0.754±0.005 0.841±0.002
Symm 40 0.670±0.010 0.655±0.005 0.715±0.008 0.726±0.023 0.664±0.008 0.572±0.026 0.680±0.005 0.808±0.005
Symm 60 0.515±0.002 0.512±0.007 0.571±0.007 0.645±0.008 0.505±0.011 0.345±0.062 0.575±0.017 0.729±0.002
Symm 80 0.335±0.007 0.329±0.009 0.362±0.023 0.310±0.068 0.344±0.010 0.165±0.044 0.436±0.011 0.530±0.014
Asymm 10 0.813±0.006 0.801±0.009 0.832±0.003 0.820±0.001 0.806±0.006 0.698±0.062 0.780±0.009 0.843±0.003
Asymm 20 0.758±0.017 0.738±0.013 0.788±0.006 0.787±0.007 0.744±0.011 0.667±0.056 0.738±0.020 0.845±0.002
Asymm 30 0.651±0.021 0.646±0.015 0.689±0.009 0.718±0.019 0.653±0.023 0.627±0.055 0.695±0.008 0.808±0.005
Asymm 40 0.569±0.015 0.543±0.012 0.560±0.010 0.616±0.017 0.555±0.019 0.449±0.152 0.636±0.025 0.734±0.006
MedicalImages ? 0 0.841±0.023 0.850±0.013 0.850±0.009 0.848±0.013 0.837±0.017 0.620±0.073 0.774±0.024 0.809±0.009
Symm 20 0.680±0.032 0.635±0.020 0.720±0.014 0.749±0.029 0.669±0.028 0.403±0.036 0.718±0.019 0.809±0.011
Symm 40 0.561±0.024 0.485±0.015 0.517±0.022 0.585±0.023 0.538±0.030 0.125±0.015 0.619±0.032 0.702±0.039
Symm 60 0.340±0.037 0.347±0.037 0.357±0.017 0.432±0.027 0.352±0.031 0.100±0.000 0.533±0.018 0.523±0.017
Symm 80 0.245±0.020 0.221±0.026 0.244±0.021 0.310±0.045 0.257±0.034 0.100±0.000 0.480±0.040 0.412±0.050
Asymm 10 0.761±0.030 0.740±0.032 0.750±0.022 0.754±0.025 0.761±0.024 0.564±0.045 0.733±0.020 0.761±0.006
Asymm 20 0.680±0.029 0.671±0.017 0.690±0.021 0.672±0.015 0.674±0.027 0.491±0.024 0.680±0.024 0.745±0.005
Asymm 30 0.640±0.021 0.625±0.026 0.649±0.014 0.658±0.020 0.630±0.010 0.310±0.153 0.673±0.032 0.673±0.022
Asymm 40 0.571±0.018 0.556±0.016 0.581±0.024 0.568±0.019 0.566±0.033 0.399±0.062 0.665±0.016 0.585±0.027
FacesUCR ? 0 0.992±0.003 0.992±0.009 0.995±0.002 0.986±0.009 0.992±0.002 0.986±0.004 0.912±0.016 0.969±0.005
Symm 20 0.843±0.014 0.839±0.006 0.896±0.012 0.921±0.006 0.867±0.018 0.976±0.004 0.847±0.012 0.975±0.003
Symm 40 0.717±0.012 0.725±0.024 0.778±0.013 0.884±0.008 0.724±0.006 0.945±0.003 0.778±0.021 0.949±0.009
Symm 60 0.531±0.033 0.537±0.022 0.563±0.008 0.741±0.013 0.513±0.015 0.622±0.284 0.653±0.028 0.810±0.007
Symm 80 0.284±0.018 0.279±0.009 0.311±0.021 0.475±0.025 0.293±0.005 0.391±0.262 0.450±0.024 0.495±0.015
Asymm 10 0.912±0.005 0.911±0.009 0.939±0.002 0.971±0.011 0.908±0.011 0.982±0.002 0.879±0.005 0.978±0.004
Asymm 20 0.837±0.015 0.824±0.012 0.858±0.011 0.914±0.002 0.828±0.008 0.954±0.007 0.869±0.005 0.969±0.006
Asymm 30 0.689±0.008 0.689±0.013 0.742±0.014 0.818±0.011 0.706±0.026 0.940±0.018 0.818±0.005 0.920±0.006
Asymm 40 0.594±0.021 0.592±0.030 0.602±0.019 0.740±0.022 0.616±0.020 0.882±0.031 0.783±0.007 0.847±0.021
Distal Phalanx TW ? 0 0.540±0.032 0.516±0.031 0.491±0.035 0.504±0.031 0.492±0.025 0.333±0.000 0.457±0.081 0.534±0.010
Symm 20 0.428±0.054 0.412±0.020 0.450±0.012 0.431±0.060 0.475±0.041 0.333±0.000 0.394±0.105 0.538±0.028
Symm 40 0.358±0.037 0.329±0.040 0.390±0.043 0.444±0.013 0.360±0.024 0.357±0.047 0.359±0.015 0.470±0.012
Symm 60 0.269±0.043 0.228±0.035 0.284±0.021 0.336±0.027 0.293±0.050 0.333±0.000 0.283±0.030 0.355±0.053
Symm 80 0.266±0.023 0.243±0.047 0.290±0.033 0.334±0.034 0.248±0.025 0.300±0.067 0.371±0.013 0.452±0.023
Asymm 10 0.561±0.026 0.441±0.017 0.503±0.056 0.493±0.025 0.510±0.024 0.357±0.047 0.471±0.055 0.565±0.012
Asymm 20 0.440±0.032 0.397±0.033 0.516±0.054 0.448±0.022 0.485±0.020 0.357±0.047 0.341±0.042 0.604±0.025
Asymm 30 0.387±0.024 0.301±0.035 0.415±0.044 0.447±0.077 0.342±0.024 0.369±0.044 0.334±0.057 0.475±0.047
Asymm 40 0.388±0.031 0.304±0.052 0.349±0.033 0.355±0.066 0.387±0.038 0.333±0.000 0.379±0.017 0.367±0.080
Middle Phalanx TW ? 0 0.357±0.029 0.352±0.041 0.373±0.031 0.341±0.011 0.343±0.011 0.338±0.010 0.389±0.049 0.382±0.036
Symm 20 0.354±0.039 0.316±0.034 0.351±0.029 0.361±0.054 0.328±0.041 0.336±0.011 0.338±0.046 0.372±0.015
Symm 40 0.291±0.019 0.258±0.024 0.316±0.033 0.345±0.007 0.312±0.032 0.333±0.000 0.303±0.040 0.379±0.015
Symm 60 0.268±0.032 0.228±0.042 0.340±0.044 0.342±0.028 0.310±0.016 0.333±0.000 0.280±0.026 0.348±0.042
Symm 80 0.251±0.075 0.206±0.043 0.256±0.046 0.337±0.036 0.223±0.029 0.167±0.000 0.315±0.036 0.355±0.030
Asymm 10 0.354±0.026 0.368±0.020 0.420±0.030 0.357±0.037 0.335±0.026 0.340±0.005 0.360±0.032 0.366±0.021
Asymm 20 0.322±0.027 0.260±0.032 0.318±0.028 0.332±0.014 0.319±0.018 0.360±0.013 0.315±0.044 0.383±0.025
Asymm 30 0.335±0.031 0.290±0.038 0.372±0.012 0.330±0.016 0.329±0.027 0.347±0.014 0.318±0.052 0.372±0.011
Asymm 40 0.384±0.038 0.393±0.042 0.351±0.043 0.352±0.033 0.354±0.020 0.344±0.000 0.355±0.053 0.329±0.036
Win / Total ? ? 2 / 63 2 / 63 5 / 63 0 / 63 0 / 63 4 / 63 6 / 63 44 / 63
  Table B3 Results (mean ± std) on various benchmark data sets evaluated by Balanced Accuracy. The best performance is bolded
1 Z H Zhou . Machine Learning. Singapore: Springer, 2021
2 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770−778
3 G, Adomavicius A Tuzhilin . Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17( 6): 734–749
4 I Kononenko . Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine, 2001, 23( 1): 89–109
5 Cao H, Li X L, Woon Y K, Ng S K. SPO: structure preserving oversampling for imbalanced time series classification. In: Proceedings of the 11th IEEE International Conference on Data Mining. 2011, 1008−1013
6 L Z, Guo F, Kuang Z X, Liu Y F, Li N, Ma X H Qie . IWE-Net: instance weight network for locating negative comments and its application to improve traffic user experience. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020, 4052−4059
7 B, Frenay M Verleysen . Classification in the presence of label noise: a survey. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25( 5): 845–869
8 G, Atkinson V Metsis . A survey of methods for detection and correction of noisy labels in time series data. In: Proceedings of the 17th International Conference on Artificial Intelligence Applications and Innovations. 2021, 479−493
9 T, Wei H, Wang W, Tu Y F Li . Robust model selection for positive and unlabeled learning with constraints. Science China Information Science, 2022, 65( 11): 212101
10 C, Pelletier S, Valero J, Inglada N, Champion C M, Sicre G Dedieu . Effect of training class label noise on classification performances for land cover mapping with satellite image time series. Remote Sensing, 2017, 9( 2): 173
11 A, Castellani S, Schmitt B Hammer . Estimating the electrical power output of industrial devices with end-to-end time-series classification in the presence of label noise. In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2021, 469−484
12 Atkinson G, Metsis V. Identifying label noise in time-series datasets. In: Proceedings of 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of 2020 ACM International Symposium on Wearable Computers. 2020, 238−243
13 H, Cao X L, Li D Y K, Woon S K Ng . Integrated oversampling for imbalanced time series classification. IEEE Transactions on Knowledge and Data Engineering, 2013, 25( 12): 2809–2822
14 B, Kim J H, Choi J Choo . Augmenting imbalanced time-series data via adversarial perturbation in latent space. In: Proceedings of the 13th Asian Conference on Machine Learning. 2021, 1633−1644
15 H, Huang C, Xu S, Yoo W, Yan T, Wang F Xue . Imbalanced time series classification for flight data analyzing with nonlinear granger causality learning. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020, 2533−2540
16 Y, Geng X Luo . Cost-sensitive convolutional neural networks for imbalanced time series classification. Intelligent Data Analysis, 2019, 23( 2): 357–370
17 Ward M, Malmsten K, Salamy H, Min C H. Data balanced bagging ensemble of convolutional- LSTM neural networks for time series data classification with an imbalanced dataset. In: Proceedings of 2021 IEEE International Symposium on Circuits and Systems. 2021, 1−5
18 T, Wei J X, Shi W W, Tu Y F Li . Robust long-tailed learning under label noise. 2021, arXiv preprint arXiv: 2108.11569
19 T, Wei J X, Shi Y F, Li M L Zhang . Prototypical classifier for robust class-imbalanced learning. In: Proceedings of the 26th Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2022, 44−57
20 X J, Gui W, Wang Z H Tian . Towards understanding deep learning from noisy labels with small-loss criterion. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence. 2021, 2469−2475
21 M, Lukasik S, Bhojanapalli A K, Menon S Kumar . Does label smoothing mitigate label noise?. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 598
22 S, Laine T Aila . Temporal ensembling for semi-supervised learning. In: Proceedings of the 5th International Conference on Learning Representations. 2017
23 B, Han Q, Yao T, Liu G, Niu I W, Tsang J T, Kwok M Sugiyama . A survey of label-noise representation learning: past, present and future. 2021, arXiv preprint arXiv: 2011.04406
24 B, Han Q, Yao X, Yu G, Niu M, Xu W, Hu I W, Tsang M Sugiyama . Co-teaching: robust training of deep neural networks with extremely noisy labels. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 8536−8546
25 Y F, Li D M Liang . Safe semi-supervised learning: a brief introduction. Frontiers of Computer Science, 2019, 13( 4): 669–676
26 Jia L H, Guo L Z, Zhou Z, Li Y F. Lamda-ssl: a comprehensive semi-supervised learning toolkit. Science China Information Science, 2023
27 Dau H A, Bagnall A J, Kamgar K, Yeh C M, Zhu Y, Gharghabi S, Ratanamahatana C A, Keogh E J. The UCR time series archive. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1293–1305
28 D P, Kingma J Ba . Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations. 2015
29 R, Tavenard J, Faouzi G, Vandewiele F, Divo G, Androz C, Holtz M, Payne R, Yurchak M, Rußwurm K, Kolar E Woods . Tslearn, a machine learning toolkit for time series data. The Journal of Machine Learning Research, 2020, 21( 1): 118
30 B, Han G, Niu X, Yu Q, Yao M, Xu I W, Tsang M Sugiyama . SIGUA: forgetting may make learning with noisy labels more robust. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 4006−4016
31 N V, Chawla K W, Bowyer L O, Hall W P Kegelmeyer . SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16( 1): 321–357
32 K, Cao C, Wei A, Gaidon N, Arechiga T Ma . Learning imbalanced datasets with label-distribution-aware margin loss. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019, 140
33 K H, Brodersen C S, Ong K E, Stephan J M Buhmann . The balanced accuracy and its posterior distribution. In: Proceedings of the 20th International Conference on Pattern Recognition. 2010, 3121−3124
[1] FCS-23200-OF-ZZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed