Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2018, Vol. 12 Issue (4): 630-642   https://doi.org/10.1007/s11705-018-1747-2
  本期目录
Automated retrofit targeting of heat exchanger networks
Timothy G. Walmsley1(), Nathan S. Lal2, Petar S. Varbanov1, Jiří J. Klemeš1
1. Sustainable Process Integration Laboratory – SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, Brno 60190, Czech Republic
2. Energy Research Centre, School of Engineering, University of Waikato, Hamilton 3240, New Zealand
 全文: PDF(771 KB)   HTML
Abstract

The aim of this paper is to develop a novel heat exchanger network (HEN) retrofit method based on a new automated retrofit targeting (ART) algorithm. ART uses the heat surplus-deficit table (HSDT) in combination with the Bridge Retrofit concepts to generate retrofit bridges option, from which a retrofit design may be formulated. The HSDT is a tabular tool that shows potential for improved re-integration of heat source and sink streams within a HEN. Using the HSDT, retrofit bridges—a set of modifications that links a cooler to a heater to save energy—may be identified, quantified, and compared. The novel retrofit method including the ART algorithm has been successfully implemented in Microsoft ExcelTM to enable analysis of large-scale HENs. A refinery case study with 27 streams and 46 existing heat exchangers demonstrated the retrofit method’s potential. For the case study, the ART algorithm found 68903 feasible unique retrofit opportunities with a minimum 400 kW·unit−1 threshold for heat recovery divided by the number of new units. The most promising retrofit project required 3 new heat exchanger units to achieve a heat savings of 4.24 MW with a favorable annualised profit and a reasonable payback period.

Key wordsprocess retrofit    pinch analysis    heat exchanger network    heat recovery
收稿日期: 2018-03-01      出版日期: 2019-01-03
Corresponding Author(s): Timothy G. Walmsley   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2018, 12(4): 630-642.
Timothy G. Walmsley, Nathan S. Lal, Petar S. Varbanov, Jiří J. Klemeš. Automated retrofit targeting of heat exchanger networks. Front. Chem. Sci. Eng., 2018, 12(4): 630-642.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-018-1747-2
https://academic.hep.com.cn/fcse/CN/Y2018/V12/I4/630
Fig.1  
Fig.2  
Fig.3  
T*/°C DT*/°C CPnet/kW?°C?1 DH/kW
T1
T1 ? T2 (CPh ? CPc)1–2 (DT· CPnet)1–2
T2
T2 ? T3 (CPh ? CPc)2–3 (DT· CPnet)2–3
Tn–1 ? Tn (CPh ? CPc)[n–1]–n (DT ·CPnet)[n–1]–n
Tn
Tab.1  
T*/°C DH(C)/kW ··· DH(R)/kW ··· DH(H)/kW
T1
DH1–2(C) ··· DH1-2(R) ··· DH1-2(H)
T2
DH2–3(C) ··· DH2-3(R) DH2-3(H)
DH[n–1]–n(C) ··· DH[n–1]–n(R) ··· DH[n–1]–n(H)
Tn
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Threshold, qthres/kW?unit?1 Solution Time a)/s Number of feasible retrofit bridges
Eq. (1) ? 1.67 × 1018 b)
≥100 2661478 c) 99322377130 c)
≥200 2304 83453438
≥300 38.61 1177355
≥400 2.01 68903
≥500 0.48 11793
≥600 0.17 3789
≥700 0.06 1144
≥800 0.03 418
≥900 0.02 138
≥1000 0.01 73
≥1100 <0.01 21
≥1200 <0.01 16
≥1300 <0.01 6
≥1400 <0.01 6
≥1,413 <0.01 6
Tab.3  
Fig.8  
Fig.9  
1 ŽZore, L Čuček, ZKravanja. Syntheses of sustainable supply networks with a new composite criterion—Sustainability profit. Computers & Chemical Engineering, 2017, 102: 139–155 doi:10.1016/j.compchemeng.2016.12.003
2 J JKlemeš, ed. Handbook of Process Integration (PI): Minimisation of Energy and Water Use, Waste and Emissions.Cambridge, UK: Woodhead Publishing, 2013, 3–27
3 A HTarighaleslami, T GWalmsley, M JAtkins, M R WWalmsley, J RNeale. Total site heat integration: Utility selection and optimisation using cost and exergy derivative analysis. Energy, 2017, 141: 949–963
https://doi.org/10.1016/j.energy.2017.09.148
4 SPerry, J J Klemeš, I Bulatov. Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors. Energy, 2008, 33(10): 1489–1497
https://doi.org/10.1016/j.energy.2008.03.008
5 B H YOng, T GWalmsley, M JAtkins, M R WWalmsley. Total site mass, heat and power integration using process integration and process graph. Journal of Cleaner Production, 2017, 167: 32–43
https://doi.org/10.1016/j.jclepro.2017.08.035
6 M OAkpomiemie, RSmith. Cost-effective strategy for heat exchanger network retrofit. Energy, 2018, 146: 82–97
https://doi.org/10.1016/j.energy.2017.09.005
7 T GWalmsley, M J Atkins, M R W Walmsley, M Philipp, R HPeesel. Process and utility systems integration and optimisation for ultra-low energy milk powder production. Energy, 2018, 146: 67–81
https://doi.org/10.1016/j.energy.2017.04.142
8 NVan Duc Long, MLee. Debottlenecking the retrofitted thermally coupled distillation sequence. Industrial & Engineering Chemistry Research, 2013, 52(35): 12635–12645
https://doi.org/10.1021/ie401140v
9 RSmith, M Jobson, LChen. Recent development in the retrofit of heat exchanger networks. Applied Thermal Engineering, 2010, 30(16): 2281–2289
https://doi.org/10.1016/j.applthermaleng.2010.06.006
10 B KSreepathi, G PRangaiah. Review of heat exchanger network retrofitting methodologies and their applications. Industrial & Engineering Chemistry Research, 2014, 53(28): 11205–11220
https://doi.org/10.1021/ie403075c
11 MBagajewicz, G Valtinson, DNguyen Thanh. Retrofit of crude units preheating trains: Mathematical programming versus pinch technology. Industrial & Engineering Chemistry Research, 2013, 52(42): 14913–14926
https://doi.org/10.1021/ie401675k
12 NJiang, J D Shelley, S Doyle, RSmith. Heat exchanger network retrofit with a fixed network structure. Applied Energy, 2014, 127: 25–33
https://doi.org/10.1016/j.apenergy.2014.04.028
13 M OAkpomiemie, RSmith. Retrofit of heat exchanger networks without topology modifications and additional heat transfer area. Applied Energy, 2015, 159: 381–390
https://doi.org/10.1016/j.apenergy.2015.09.017
14 M OAkpomiemie, RSmith. Retrofit of heat exchanger networks with heat transfer enhancement based on an area ratio approach. Applied Energy, 2016, 165: 22–35
https://doi.org/10.1016/j.apenergy.2015.11.056
15 MPan, I Bulatov, RSmith. Exploiting tube inserts to intensify heat transfer for the retrofit of heat exchanger networks considering fouling mitigation. Industrial & Engineering Chemistry Research, 2013, 52(8): 2925–2943
https://doi.org/10.1021/ie303020m
16 MPan, I Bulatov, RSmith. Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation. Applied Energy, 2016, 161: 611–626
https://doi.org/10.1016/j.apenergy.2015.09.073
17 B HLi, C T Chang. Retrofitting heat exchanger networks based on simple pinch analysis. Industrial & Engineering Chemistry Research, 2010, 49(8): 3967–3971
https://doi.org/10.1021/ie9016607
18 BBakhtiari, S Bedard. Retrofitting heat exchanger networks using a modified network pinch approach. Applied Thermal Engineering, 2013, 51(1–2): 973–979
https://doi.org/10.1016/j.applthermaleng.2012.10.045
19 RNordman, T Berntsson. Use of advanced composite curves for assessing cost-effective HEN retrofit I: Theory and concepts. Applied Thermal Engineering, 2009, 29(2–3): 275–281
https://doi.org/10.1016/j.applthermaleng.2008.02.021
20 RNordman, T Berntsson. Use of advanced composite curves for assessing cost-effective HEN retrofit II. Case studies. Applied Thermal Engineering, 2009, 29(2–3): 282–289
https://doi.org/10.1016/j.applthermaleng.2008.02.022
21 D AKamel, M A Gadalla, O Y Abdelaziz, M A Labib, F H Ashour. Temperature driving force (TDF) curves for heat exchanger network retrofit—A case study and implications. Energy, 2017, 123: 283–295
https://doi.org/10.1016/j.energy.2017.02.013
22 Y QLai, Z A Manan, S R Wan Alwi. Heat exchanger network retrofit using individual stream temperature vs enthalpy plot. Chemical Engineering Transactions, 2017, 61: 1651–1656
23 J CBonhivers, MKorbel, MSorin, LSavulescu, P RStuart. Energy transfer diagram for improving integration of industrial systems. Applied Thermal Engineering, 2014, 63(1): 468–479
https://doi.org/10.1016/j.applthermaleng.2013.10.046
24 J CBonhivers, BSrinivasan, P RStuart. New analysis method to reduce the industrial energy requirements by heat-exchanger network retrofit: Part 1—Concepts. Applied Thermal Engineering, 2017, 119: 659–669
https://doi.org/10.1016/j.applthermaleng.2014.04.078
25 J CBonhivers, AAlva-Argaez, BSrinivasan, P RStuart. New analysis method to reduce the industrial energy requirements by heat-exchanger network retrofit: Part 2—Stepwise and graphical approach. Applied Thermal Engineering, 2017, 119: 670–686
https://doi.org/10.1016/j.applthermaleng.2015.05.085
26 M R WWalmsley, NLal, T G Walmsley, M J Atkins. A modified energy transfer diagram for improved retrofit bridge analysis. Chemical Engineering Transactions, 2017, 61: 907–912
27 N SLal, T G Walmsley, M R W Walmsley, M J Atkins, J R Neale. A novel heat exchanger network bridge retrofit method using the modified energy transfer diagram. Energy, 2018, 155: 190–204
https://doi.org/10.1016/j.energy.2018.05.019
28 J YYong, P S Varbanov, J J Klemeš. Heat exchanger network retrofit supported by extended grid diagram and heat path development. Applied Thermal Engineering, 2015, 89: 1033–1045
https://doi.org/10.1016/j.applthermaleng.2015.04.025
29 N KAbbood, Z A Manan, S R Wan Alwi. A combined numerical and visualization tool for utility targeting and heat exchanger network retrofitting. Journal of Cleaner Production, 2012, 23(1): 1–7
https://doi.org/10.1016/j.jclepro.2011.10.020
30 ANemet, J J Klemeš, P S Varbanov, V Mantelli. Heat integration retrofit analysis—an oil refinery case study by retrofit tracing grid diagram. Frontiers of Chemical Science and Engineering, 2015, 9(2): 163–182
https://doi.org/10.1007/s11705-015-1520-8
31 LČuček, ZKravanja. Retrofit of total site heat exchanger networks by mathematical programming approach. In: Martín M, ed. Alternative Energy Sources and Technologies.New Jersey: Springer International Publishing, 2016, 297–340
32 LČuček, VMantelli, J YYong, P SVarbanov, J JKlemeš, ZKravanja. A procedure for the retrofitting of large-scale heat exchanger networks for fixed and flexible designs applied to existing refinery total site. Chemical Engineering Transactions, 2015, 45: 109–114
33 EAyotte-Sauvé, OAshrafi, SBédard, NRohani. Optimal retrofit of heat exchanger networks: A stepwise approach. Computers & Chemical Engineering, 2017, 106: 243–268
https://doi.org/10.1016/j.compchemeng.2017.06.008
34 SKakaç, H Liu. Heat exchangers: Selection, rating, and thermal design.London: CRC, 2002, 57–66
35 RTurton, R C Bailie, W B Whiting, J A Shaeiwitz. Analysis, Synthesis, and Design of Chemical Processes. Pearson Education, 2008, 186–193
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed