Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (2): 310-318   https://doi.org/10.1007/s11705-020-1940-y
  本期目录
Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine
Miao Guan1, Mengfan Wang1,3(), Wei Qi1,2,3, Rongxin Su1,2,3, Zhimin He1
1. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, China
2. The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300350, China
3. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China
 全文: PDF(1326 KB)   HTML
Abstract

Recently, many efforts have been dedicated to creating enzyme-mimicking catalysts to replace natural enzymes in practical fields. Inspired by the pathological biomineralization behaviour of L-cystine, in this study, we constructed a laccase-like catalyst through the co-assembly of L-cystine with Cu ions. Structural analysis revealed that the formed catalytic Cu-cystine nanoleaves (Cu-Cys NLs) possess a Cu(I)-Cu(II) electron transfer system similar to that in natural laccase. Reaction kinetic studies demonstrated that the catalyst follows the typical Michaelis-Menten model. Compared with natural laccase, the Cu-Cys NLs exhibit superior stability during long-term incubation under extreme pH, high-temperature or high-salt conditions. Remarkably, the Cu-Cys NLs could be easily recovered and still maintained 76% of their activity after 8 cycles. Finally, this laccase mimic was employed to develop a colorimetric method for epinephrine detection, which achieved a wider linear range (9–455 μmol·L−1) and lower limit of detection (2.7 μmol·L−1). The Cu-Cys NLs also displayed excellent specificity and sensitivity towards epinephrine in a test based on urine samples.

Key wordsbiomineralization    laccase    L-cystine    colorimetric detection    enzyme mimic
收稿日期: 2020-02-21      出版日期: 2021-03-10
Corresponding Author(s): Mengfan Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(2): 310-318.
Miao Guan, Mengfan Wang, Wei Qi, Rongxin Su, Zhimin He. Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Front. Chem. Sci. Eng., 2021, 15(2): 310-318.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1940-y
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I2/310
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Sample Added epinephrine/(µmol·L−1) Found/(µmol·L−1) Recovery/% RSD /% (n = 3)
Urine 0 ? ? ?
20 21.7 108.3 5.979
50 51.5 103.0 4.350
100 100.1 100.1 2.586
Tab.1  
1 H Sun, Y Zhou, J Ren, X Qu. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angewandte Chemie International Edition in English, 2018, 57(30): 9224–9237
https://doi.org/10.1002/anie.201712469
2 Z Chen, Z Wang, J Ren, X Qu. Enzyme mimicry for combating bacteria and biofilms. Accounts of Chemical Research, 2018, 51(3): 789–799
https://doi.org/10.1021/acs.accounts.8b00011
3 D Jiang, D Ni, Z T Rosenkrans, P Huang, X Yan, W Cai. Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 48(14): 3683–3704
https://doi.org/10.1039/C8CS00718G
4 Y Huang, M Zhao, S Han, Z Lai, J Yang, C Tan, Q Ma, Q Lu, J Chen, X Zhang, Z Zhang, B Li, B Chen, Y Zong, H Zhang. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Advanced Materials, 2017, 29(32): 1–5
https://doi.org/10.1002/adma.201700102
5 Y Huang, J Ren, X Qu. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 2019, 119(6): 4357–4412
https://doi.org/10.1021/acs.chemrev.8b00672
6 L Tian, J Qi, O Oderinde, C Yao, W Song, Y Wang. Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microrna biosensor. Biosensors & Bioelectronics, 2018, 110: 110–117
https://doi.org/10.1016/j.bios.2018.03.045
7 L Han, H Zhang, D Chen, F Li. Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Advanced Functional Materials, 2018, 28(17): 1800018
https://doi.org/10.1002/adfm.201800018
8 A M Wright, Z Wu, G Zhang, J L Mancuso, R J Comito, R W Day, C H Hendon, J T Miller, M Dincă. A structural mimic of carbonic anhydrase in a metal-organic framework. Chem, 2018, 4(12): 2894–2901
https://doi.org/10.1016/j.chempr.2018.09.011
9 O Zozulia, M A Dolan, I V Korendovych. Catalytic peptide assemblies. Chemical Society Reviews, 2018, 47(10): 3621–3639
https://doi.org/10.1039/C8CS00080H
10 J C Lewis. Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids. Current Opinion in Chemical Biology, 2015, 25: 27–35
https://doi.org/10.1016/j.cbpa.2014.12.016
11 K L Duncan, R V Ulijn. Short peptides in minimalistic biocatalyst design. Biocatalysis, 2015, 1(1): 67–81
https://doi.org/10.1515/boca-2015-0005
12 K Liang, R Wang, M Boutter, C M Doherty, X Mulet, J J Richardson. Biomimetic mineralization of metal-organic frameworks around polysaccharides. Chemical Communications, 2017, 53(7): 1249–1252
https://doi.org/10.1039/C6CC09680H
13 S Yao, B Jin, Z Liu, C Shao, R Zhao, X Wang, R Tang. Biomineralization: from material tactics to biological strategy. Advanced Materials, 2017, 29(14): 1605903
https://doi.org/10.1002/adma.201605903
14 Z Wang, P Huang, O Jacobson, Z Wang, Y Liu, L Lin, J Lin, N Lu, H Zhang, R Tian, G Niu, G Liu, X Chen. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano, 2016, 10(3): 3453–3460
https://doi.org/10.1021/acsnano.5b07521
15 W Habraken, P Habibovic, M Epple, M Bohner. Calcium phosphates in biomedical applications: materials for the future? Materials Today, 2016, 19(2): 69–87
https://doi.org/10.1016/j.mattod.2015.10.008
16 P Xu, X Wang, T Li, H Wu, L Li, Z Chen, L Zhang, Z Guo, Q Chen. Biomineralization-inspired nanozyme for single-wavelength laser activated photothermal-photodynamic synergistic treatment against hypoxic tumors. Nanoscale, 2020, 12(6): 4051–4060
https://doi.org/10.1039/C9NR08930F
17 M Ejgenberg, Y Mastai. Biomimetic crystallization of L-cystine hierarchical structures. Crystal Growth & Design, 2012, 12(10): 4995–5001
https://doi.org/10.1021/cg300935k
18 O W Moe. Kidney stones: pathophysiology and medical management. Lancet, 2006, 367(9507): 333–344
https://doi.org/10.1016/S0140-6736(06)68071-9
19 R Zhang, L Wang, J Han, J Wu, C Li, L Ni, Y Wang. Improving laccase activity and stability by HKUST-1 with cofactor via one-pot encapsulation and its application for degradation of bisphenol A. Journal of Hazardous Materials, 2020, 383: 121130
https://doi.org/10.1016/j.jhazmat.2019.121130
20 E Ramachandran, S Natarajan. Crystal growth of some urinary stone constituents: III. In-vitro crystallization of L-cystine and its characterization. Crystal Research and Technology, 2004, 39(4): 308–312
https://doi.org/10.1002/crat.200310187
21 X Wang, P Duan, M Liu. Universal chiral twist via metal ion induction in the organogel of terephthalic acid substituted amphiphilic l-glutamide. Chemical Communications, 2012, 48(60): 7501–7503
https://doi.org/10.1039/c2cc33246a
22 M A Mamun, O Ahmed, P K Bakshi, S Yamauchi, M Q Ehsan. Synthesis and characterization of some metal complexes of cystine: [Mn(C6H10N2O4S2)]; where MII= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II). Russian Journal of Inorganic Chemistry, 2011, 56(12): 1972–1980
https://doi.org/10.1134/S0036023611120394
23 A C Kathalikkattil, K K Bisht, N Aliaga-Alcalde, E Suresh. Synthesis, magnetic properties, and structural investigation of mixed-ligand Cu(II) helical coordination polymers with an amino acid backbone and N-donor propping: 1-D helical, 2-D hexagonal net (hcb), and 3-D ins topologies. Crystal Growth & Design, 2011, 11(5): 1631–1641
https://doi.org/10.1021/cg101587h
24 A Li, X Mu, T Li, H Wen, W Li, Y Li, B Wang. Formation of porous cu hydroxy double salt nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. Nanoscale, 2018, 10(25): 11948–11954
https://doi.org/10.1039/C8NR02832J
25 B Ma, S Wang, F Liu, S Zhang, J Duan, Z Li, Y Kong, Y Sang, H Liu, W Bu, L Li. Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857
https://doi.org/10.1021/jacs.8b08714
26 M Leng, M Z Liu, Y B Zhang, Z Q Wang, C Yu, X G Yang, H J Zhang, C Wang. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic co oxidation activity. Journal of the American Chemical Society, 2010, 132(48): 17084–17087
https://doi.org/10.1021/ja106788x
27 K Liu, C Yuan, Q Zou, Z Xie, X Yan. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angewandte Chemie International Edition in English, 2017, 56(27): 7876–7880
https://doi.org/10.1002/anie.201704678
28 Z B Guan, Q Luo, H R Wang, Y Chen, X R Liao. Bacterial laccases: promising biological green tools for industrial applications. Cellular and Molecular Life Sciences, 2018, 75(19): 3569–3592
https://doi.org/10.1007/s00018-018-2883-z
29 Q Tian, X Dou, L Huang, L Wang, D Meng, L Zhai, Y Shen, C You, Z Guan, X Liao. Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-l10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation. Journal of Hazardous Materials, 2020, 382: 121084
https://doi.org/10.1016/j.jhazmat.2019.121084
30 D M Mate, M Alcalde. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 2017, 10(6): 1457–1467
https://doi.org/10.1111/1751-7915.12422
31 H Liang, F Lin, Z Zhang, B Liu, S Jiang, Q Yuan, J Liu. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Applied Materials & Interfaces, 2017, 9(2): 1352–1360
https://doi.org/10.1021/acsami.6b15124
32 A V Bulatov, A V Petrova, A B Vishnikin, A L Moskvin, L N Moskvin. Stepwise injection spectrophotometric determination of epinephrine. Talanta, 2012, 96: 62–67
https://doi.org/10.1016/j.talanta.2012.03.059
33 S S Shankar, R M Shereema, R B Rakhi. Electrochemical determination of adrenaline using mxene/graphite composite paste electrodes. ACS Applied Materials & Interfaces, 2018, 10(50): 43343–43351
https://doi.org/10.1021/acsami.8b11741
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed