Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (2): 437-449   https://doi.org/10.1007/s11705-020-1961-6
  本期目录
Effects of functional groups for CO2 capture using metal organic frameworks
Chenkai Gu1, Yang Liu2, Weizhou Wang3, Jing Liu1(), Jianbo Hu1
1. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
3. Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
 全文: PDF(1974 KB)   HTML
Abstract

Metal organic frameworks (MOFs) are promising adsorbents for CO2 capture. Functional groups on organic linkers of MOFs play important roles in improving the CO2 capture ability by enhancing the CO2 sorption affinity. In this work, the functionalization effects on CO2 adsorption were systematically investigated by rationally incorporating various functional groups including –SO3H, –COOH, –NH2, –OH, –CN, –CH3 and –F into a MOF-177 template using computational methods. Asymmetries of electron density on the functionalized linkers were intensified, introducing significant enhancements of the CO2 adsorption ability of the modified MOF-177. In addition, three kinds of molecular interactions between CO2 and functional groups were analyzed and summarized in this work. Especially, our results reveal that –SO3H is the best-performing functional group for CO2 capture in MOFs, better than the widely used –NH2 or –F groups. The current study provides a novel route for future MOF modification toward CO2 capture.

Key wordsmetal-organic frameworks    functional groups    CO2 capture    GCMC    DFT
收稿日期: 2020-04-03      出版日期: 2021-03-10
Corresponding Author(s): Jing Liu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(2): 437-449.
Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu. Effects of functional groups for CO2 capture using metal organic frameworks. Front. Chem. Sci. Eng., 2021, 15(2): 437-449.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1961-6
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I2/437
Fig.1  
MOF dpore rcrsy/(g·cm–3) Vpore/(cm3·g–1) void fraction Sacc qst0/(kJ·mol–1)
m2·g–1 m2·cm–3
MOF-177 11.99 0.422 1.925 0.811 3977 1677 −13.41
MOF-177-NH2 11.79 0.455 1.739 0.791 3939 1792 −16.89
MOF-177-COOH 11.36 0.519 1.475 0.765 3662 1900 −19.00
MOF-177-CH3 11.76 0.453 1.725 0.781 4076 1845 −14.17
MOF-177-F 11.98 0.461 1.744 0.804 3731 1722 −14.67
MOF-177-SO3H 11.54 0.598 1.230 0.736 3260 1950 −20.52
MOF-177-CN 11.91 0.477 1.642 0.783 3838 1830 −15.46
MOF-177-OH 11.79 0.457 1.747 0.798 3843 1757 −16.48
Tab.1  
Fig.2  
Atom types s e/(kb·K–1)
CO2—C 2.800 27
CO2—O 3.050 79
MOF—Zn 2.462 62.397
MOF—N 3.261 34.721
MOF—S 3.595 137.877
MOF—F 2.997 25.16
MOF—C 3.431 52.836
MOF—O 3.118 30.192
MOF—H 2.571 22.141
Tab.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Functioal groups Configurations Total BE Ees Eexch Eind* Edisp*
None –5.05 –11.48 18.89 –1.71 –10.75
–SO3H –10.43 –16.32 18.43 –1.60 –10.94
–SO3H –23.94 –35.46 29.96 –7.19 –11.26
–COOH –13.77 –18.79 16.11 –2.07 –9.02
–COOH –11.22 –22.20 30.09 –4.03 –15.09
–COOH –16.43 –21.76 16.64 –2.77 –8.53
–F –5.06 –8.42 11.21 –0.83 –7.01
–F –9.51 –12.70 10.96 –1.21 –6.57
–NH2 –12.92 –21.77 23.46 –2.35 –12.25
–OH –9.05 –15.43 19.00 –1.80 –10.81
–CH3 –7.25 –13.00 20.50 –1.79 –12.97
–CN –11.21 –14.85 10.35 –1.82 –4.89
–CN –11.96 –16.84 14.82 –2.09 –7.86
Tab.3  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 C Zhao, X Chen, E J Anthony, X Jiang, L Duan, Y Wu, W Dong, C Zhao. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Progress in Energy and Combustion Science, 2013, 39(6): 515–534
https://doi.org/10.1016/j.pecs.2013.05.001
2 M Wang, J Liu, F Shen, H Cheng, J Dai, Y Long. Theoretical study of stability and reaction mechanism of CuO supported on ZrO2 during chemical looping combustion. Applied Surface Science, 2016, 367: 485–492
https://doi.org/10.1016/j.apsusc.2016.01.240
3 D J Darensbourg, W C Chung, K Wang, H C Zhou. Sequestering CO2 for short-term storage in MOFs: copolymer synthesis with oxiranes. ACS Catalysis, 2014, 4(5): 1511–1515
https://doi.org/10.1021/cs500259b
4 J Yu, S Wang, H Yu. Experimental studies and rate-based simulations of CO2 absorption with aqueous ammonia and piperazine blended solutions. International Journal of Greenhouse Gas Control, 2016, 50: 135–146
https://doi.org/10.1016/j.ijggc.2016.04.019
5 G T Rochelle. Amine scrubbing for CO2 capture. Science, 2009, 325(5948): 1652–1654
https://doi.org/10.1126/science.1176731
6 Y Lin. Metal organic framework membranes for separation applications. Current Opinion in Chemical Engineering, 2015, 8: 21–28
https://doi.org/10.1016/j.coche.2015.01.006
7 J Y Lin. Molecular sieves for gas separation. Science, 2016, 353(6295): 121–122
https://doi.org/10.1126/science.aag2267
8 Y Wu, X Chen, M Fan, G Jiang, Y Kong, A E Bland. Development of K and N based composite CO2 sorbents (KN) dried with a supercritical fluid. Chemical Engineering Journal, 2015, 262: 1192–1198
https://doi.org/10.1016/j.cej.2014.10.027
9 Q Yang, C Zhong, J F Chen. Computational study of CO2 storage in metal-organic frameworks. Journal of Physical Chemistry C, 2008, 112(5): 1562–1569
https://doi.org/10.1021/jp077387d
10 S Yang, Z Liu, X Yan, C Liu, Z Zhang, H Liu, L Chai. Catalytic oxidation of elemental mercury in coal-combustion flue gas over the CuAlO2 catalyst. Energy & Fuels, 2019, 33(11): 11380–11388
https://doi.org/10.1021/acs.energyfuels.9b02376
11 H Yang, Z Xu, M Fan, R Gupta, R B Slimane, A E Bland, I Wright. Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China), 2008, 20(1): 14–27
https://doi.org/10.1016/S1001-0742(08)60002-9
12 J D Figueroa, T Fout, S Plasynski, H McIlvried, R D Srivastava. Advances in CO2 capture technology—the US department of energy’s carbon sequestration program. International Journal of Greenhouse Gas Control, 2008, 2(1): 9–20
https://doi.org/10.1016/S1750-5836(07)00094-1
13 H Liu, X Xie, H Chen, S Yang, C Liu, Z Liu, Z Yang, Q Li, X Yan. SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. Fuel, 2020, 261: 116367
https://doi.org/10.1016/j.fuel.2019.116367
14 Z Zhang, Z Z Yao, S Xiang, B Chen. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy & Environmental Science, 2014, 7(9): 2868–2899
https://doi.org/10.1039/C4EE00143E
15 C Gu, J Liu, J Hu, D Wu. Highly selective separations of C2H2/C2H4 and C2H2/C2H6 in metal-organic frameworks via pore environment design. Industrial & Engineering Chemistry Research, 2019, 58(43): 19946–19957
https://doi.org/10.1021/acs.iecr.9b04304
16 J Hu, Y Liu, J Liu, C Gu. Chelation of transition metals into MOFs as a promising method for enhancing CO2 capture: a computational study. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(2): e16835
https://doi.org/10.1002/aic.16835
17 S Li, Y G Chung, C M Simon, R Q Snurr. High-throughput computational screening of multivariate metal–organic frameworks (MTV-MOFs) for CO2 capture. Journal of Physical Chemistry Letters, 2017, 8(24): 6135–6141
https://doi.org/10.1021/acs.jpclett.7b02700
18 J An, N L Rosi. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society, 2010, 132(16): 5578–5579
https://doi.org/10.1021/ja1012992
19 A Pal, S Chand, M C Das. A water-stable twofold interpenetrating microporous MOF for selective CO2 adsorption and separation. Inorganic Chemistry, 2017, 56(22): 13991–13997
https://doi.org/10.1021/acs.inorgchem.7b02136
20 S T Zheng, J T Bu, Y Li, T Wu, F Zuo, P Feng, X Bu. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. Journal of the American Chemical Society, 2010, 132(48): 17062–17064
https://doi.org/10.1021/ja106903p
21 K K Tanabe, S M Cohen. Postsynthetic modification of metal-organic frameworks—a progress report. Chemical Society Reviews, 2011, 40(2): 498–519
https://doi.org/10.1039/C0CS00031K
22 J Hu, Y Liu, J Liu, C Gu. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: the significant role of functional groups. Fuel, 2017, 200: 244–251
https://doi.org/10.1016/j.fuel.2017.03.079
23 Z Xiang, S Leng, D Cao. Functional group modification of metal-organic frameworks for CO2 capture. Journal of Physical Chemistry C, 2012, 116(19): 10573–10579
https://doi.org/10.1021/jp3018875
24 B Zheng, J Bai, J Duan, L Wojtas, M J Zaworotko. Enhanced CO2 binding affinity of a high-uptakerht-type metal-organic framework decorated with acylamide groups. Journal of the American Chemical Society, 2010, 133(4): 748–751
https://doi.org/10.1021/ja110042b
25 J An, S J Geib, N L Rosi. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine-and amino-decorated pores. Journal of the American Chemical Society, 2009, 132(1): 38–39
https://doi.org/10.1021/ja909169x
26 Y Ye, H Zhang, L Chen, S Chen, Q Lin, F Wei, Z Zhang, S Xiang. Metal-organic framework with rich accessible nitrogen sites for highly efficient CO2 capture and separation. Inorganic Chemistry, 2019, 58(12): 7754–7759
https://doi.org/10.1021/acs.inorgchem.9b00182
27 J Hu, Y Liu, J Liu, C Gu, D Wu. High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018, 256: 25–31
https://doi.org/10.1016/j.micromeso.2017.07.051
28 Y Liu, J Liu, M Chang, C Zheng. Effect of functionalized linker on CO2 binding in zeolitic imidazolate frameworks: density functional theory study. Journal of Physical Chemistry C, 2012, 116(32): 16985–16991
https://doi.org/10.1021/jp302619m
29 Y Liu, J Liu, M Chang, C Zheng. Theoretical studies of CO2 adsorption mechanism on linkers of metal–organic frameworks. Fuel, 2012, 95: 521–527
https://doi.org/10.1016/j.fuel.2011.09.057
30 Y B Zhang, H Furukawa, N Ko, W Nie, H J Park, S Okajima, K E Cordova, H Deng, J Kim, O M Yaghi. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. Journal of the American Chemical Society, 2015, 137(7): 2641–2650
https://doi.org/10.1021/ja512311a
31 Accelrys Software Inc. Materials Studio Release Notes, release 4.4. Accelrys Software Inc.: San Diego, CA, 2008
32 Q Yang, S Vaesen, F Ragon, A D Wiersum, D Wu, A Lago, T Devic, C Martineau, F Taulelle, P L Llewellyn, et al. A water stable metal-organic framework with optimal features for CO2 capture. Angewandte Chemie International Edition, 2013, 52(39): 10316–10320
https://doi.org/10.1002/anie.201302682
33 Y X Zhou, Y Z Chen, Y Hu, G Huang, S H Yu, H L Jiang. MIL-101-SO3H: a highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(46): 14976–14980
https://doi.org/10.1002/chem.201404104
34 L Sarkisov, A Harrison. Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation, 2011, 37(15): 1248–1257
https://doi.org/10.1080/08927022.2011.592832
35 C Gu, J Liu, J Hu, D Wu. Metal-organic frameworks chelated by zinc fluorides for ultra-high affinity to acetylene during C2/C1 separations. Fuel, 2020, 266: 117037
https://doi.org/10.1016/j.fuel.2020.117037
36 Y Yang, J Liu, Z Wang. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion. Progress in Energy and Combustion Science, 2020, 79: 100844
https://doi.org/10.1016/j.pecs.2020.100844
37 Z Wang, J Liu, Y Yang, F Liu, J Ding. Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO2 catalyst. Proceedings of the Combustion Institute, 2019, 37(3): 2967–2975
https://doi.org/10.1016/j.proci.2018.06.132
38 Z Wang, J Liu, Y Yang, Y Yu, X Yan, Z Zhang. AMn2O4 (A= Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. Journal of Hazardous Materials, 2020, 388: 121738
https://doi.org/10.1016/j.jhazmat.2019.121738
39 A Ikeda, Y Nakao, H Sato, S Sakaki. Binding energy of transition-metal complexes with large p-conjugate systems. Density functional theory vs post-Hartree-Fock methods. Journal of Physical Chemistry A, 2007, 111(30): 7124–7132
https://doi.org/10.1021/jp0708648
40 N Ramsahye, G Maurin, S Bourrelly, P Llewellyn, C Serre, T Loiseau, T Devic, G Ferey. Probing the adsorption sites for CO2 in metal organic frameworks materials MIL-53 (Al, Cr) and MIL-47(V) by density functional theory. Journal of Physical Chemistry C, 2008, 112(2): 514–520
https://doi.org/10.1021/jp075782y
41 B Delley. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764
https://doi.org/10.1063/1.1316015
42 T B Lee, D Kim, D H Jung, S B Choi, J H Yoon, J Kim, K Choi, S H Choi. Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catalysis Today, 2007, 120(3-4): 330–335
https://doi.org/10.1016/j.cattod.2006.09.030
43 Z Wang, J Liu, Y Yang, Y Yu, X Yan, Z Zhang. Insights into the catalytic behavior of LaMnO3 perovskite for Hg0 oxidation by HCl. Journal of Hazardous Materials, 2020, 383: 121156
https://doi.org/10.1016/j.jhazmat.2019.121156
44 J J Potoff, J I Siepmann. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal. American Institute of Chemical Engineers, 2001, 47(7): 1676–1682
https://doi.org/10.1002/aic.690470719
45 A K Rappé, C J Casewit, K Colwell, W Goddard III, W Skiff. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114(25): 10024–10035
https://doi.org/10.1021/ja00051a040
46 F A Momany. Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid. Journal of Physical Chemistry, 1978, 82(5): 592–601
https://doi.org/10.1021/j100494a019
47 C Campañá, B Mussard, T K Woo. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. Journal of Chemical Theory and Computation, 2009, 5(10): 2866–2878
https://doi.org/10.1021/ct9003405
48 E Argueta, J Shaji, A Gopalan, P Liao, R Q Snurr, D A Gómez-Gualdrón. Molecular building block-based electronic charges for high-throughput screening of metal-organic frameworks for adsorption applications. Journal of Chemical Theory and Computation, 2018, 14(1): 365–376
https://doi.org/10.1021/acs.jctc.7b00841
49 T A Manz, D S Sholl. Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. Journal of Chemical Theory and Computation, 2010, 6(8): 2455–2468
https://doi.org/10.1021/ct100125x
50 W D Cornell, P Cieplak, C I Bayly, I R Gould, K M Merz, D M Ferguson, D C Spellmeyer, T Fox, J W Caldwell, P A Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995, 117(19): 5179–5197
https://doi.org/10.1021/ja00124a002
51 A Torrisi, R G Bell, C Mellot-Draznieks. Predicting the impact of functionalized ligands on CO2 adsorption in MOFs: a combined DFT and Grand Canonical Monte Carlo study. Microporous and Mesoporous Materials, 2013, 168: 225–238
https://doi.org/10.1016/j.micromeso.2012.10.002
52 C Gu, J Liu, J Hu, D Wu. Highly efficient separations of C2H2 from C2H2/CO and C2H2/H2 in metal-organic frameworks with ZnF2 chelation: a molecular simulation study. Fuel, 2020, 271: 117598
https://doi.org/10.1016/j.fuel.2020.117598
53 T Steiner, G R Desiraju. Distinction between the weak hydrogen bond and the van der Waals interaction. Chemical Communications, 1998, (8): 891–892
https://doi.org/10.1039/a708099i
54 R Paulini, K Müller, F Diederich. Orthogonal multipolar interactions in structural chemistry and biology. Angewandte Chemie International Edition, 2005, 44(12): 1788–1805
https://doi.org/10.1002/anie.200462213
55 B Jeziorski, R Moszynski, K Szalewicz. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 1994, 94(7): 1887–1930
https://doi.org/10.1021/cr00031a008
56 Y Shao, Z Gan, E Epifanovsky, A T B Gilbert, M Wormit, J Kussmann, A W Lange, A Behn, J Deng, X Feng, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113(2): 184–215
https://doi.org/10.1080/00268976.2014.952696
57 K A Fioretos, G M Psofogiannakis, G E Froudakis. Ab-initio study of the adsorption and separation of NOx and SOx gases in functionalized IRMOF ligands. Journal of Physical Chemistry C, 2011, 115(50): 24906–24914
https://doi.org/10.1021/jp2084378
58 C Gu, Y Liu, J Liu, J Hu, W Wang. Ab initio study of gas adsorption in metal-organic frameworks modified by lithium: the significant role of Li-containing functional groups. Journal of Physical Chemistry C, 2018, 122(32): 18395–18404
https://doi.org/10.1021/acs.jpcc.8b03112
59 C Gu, J Liu, J Hu, W Wang. Metal-organic frameworks grafted by univariate and multivariate heterocycles for enhancing CO2 capture: a molecular simulation study. Industrial & Engineering Chemistry Research, 2019, 58(6): 2195–2205
https://doi.org/10.1021/acs.iecr.8b04950
60 A R Millward, O M Yaghi. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005, 127(51): 17998–17999
https://doi.org/10.1021/ja0570032
61 A Phan, C J Doonan, F J Uribe-Romo, C B Knobler, M O’Keeffe, O M Yaghi. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67
https://doi.org/10.1021/ar900116g
62 P Chowdhury, C Bikkina, D Meister, F Dreisbach, S Gumma. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous and Mesoporous Materials, 2009, 117(1-2): 406–413
https://doi.org/10.1016/j.micromeso.2008.07.029
63 R Anderson, J Rodgers, E Argueta, A Biong, D A Gómez-Gualdrón. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337
https://doi.org/10.1021/acs.chemmater.8b02257
[1] FCE-20021-OF-GC_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed