Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (4): 1021-1032   https://doi.org/10.1007/s11705-020-2006-x
  本期目录
High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach
Yunrui Tian1, Haishun Du2, Shatila Sarwar2, Wenjie Dong1, Yayun Zheng1, Shumin Wang1, Qingping Guo1, Jujie Luo1(), Xinyu Zhang2()
1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
 全文: PDF(2250 KB)   HTML
Abstract

We present a one-step route for the preparation of nickel phosphide/carbon nanotube (Ni2P@CNT) nanocomposites for supercapacitor applications using a facile, ultrafast (90 s) microwave-based approach. Ni2P nanoparticles could grow uniformly on the surface of CNTs under the optimized reaction conditions, namely, a feeding ratio of 30:50:25 for CNT, Ni(NO3)2·6H2O, and red phosphorus and a microwave power of 1000 W for 90 s. Our study demonstrated that the single-step microwave synthesis process for creating metal phosphide nanoparticles was faster and simpler than all the other existing methods. Electrochemical results showed that the specific capacitance of the optimal Ni2P@CNT-nanocomposite electrode displayed a high specific capacitance of 854 F·g−1 at 1 A·g−1 and a superior capacitance retention of 84% after 5000 cycles at 10 A·g−1. Finally, an asymmetric supercapacitor was assembled using the nanocomposite with activated carbon as one electrode (Ni2P@CNT//AC), which showed a remarkable energy density of 33.5 W·h·kg−1 and a power density of 387.5 W·kg−1. This work will pave the way for the microwave synthesis of other transition metal phosphide materials for use in energy storage systems.

Key wordsNi2P    CNT    supercapacitors    nanocomposites    microwave
收稿日期: 2020-04-29      出版日期: 2021-06-04
Corresponding Author(s): Jujie Luo,Xinyu Zhang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(4): 1021-1032.
Yunrui Tian, Haishun Du, Shatila Sarwar, Wenjie Dong, Yayun Zheng, Shumin Wang, Qingping Guo, Jujie Luo, Xinyu Zhang. High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach. Front. Chem. Sci. Eng., 2021, 15(4): 1021-1032.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-2006-x
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I4/1021
Fig.1  
Sample C:N:P C a)/mg N b)/mg P c)/mg Microwave power/W Heating time/s
a 30:50:25 30 50 25 1000 60
b 30:50:25 30 50 25 1000 90
c 30:50:25 30 50 25 1000 120
d 30:50:25 30 50 25 800 90
e 30:40:20 30 40 20 1000 90
f 30:60:30 30 60 30 1000 90
Tab.1  
Fig.2  
Fig.3  
Sample SBET/(m2·g?1) Smicro/(m2·g?1) Vtotal/(cm3·g?1) Vmicro/(cm3·g?1)
Ni2P@CNT 23.3832 1.1811 0.205434 0.000134
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Material Method Energy density/(W·h·kg?1) Power density/(W·kg?1) Ref.
Co2P nanoflowers//graphene? Thermal decomposition 24 300 [51]
Ni2P NS/NF//AC Thermal decomposition 26 337 [52]
Ni2P/Ni/C//AC Thermal decomposition 32.02 700 [20]
NiCoP@NF//AC Thermal decomposition 27 647 [53]
Fe2O3//Ni2P Thermal decomposition 29.8 400 [54]
MnO2-CNT//AC Hydrothermal 25 500 [55]
Ni2P@CNT//AC Microwave radiation 33.5 387.5 This work
Tab.3  
1 S Y Kong, K Cheng, T Ouyang, Y Y Gao, K Ye, G L Wang, D X Cao. Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochimica Acta, 2017, 226: 29–39
https://doi.org/10.1016/j.electacta.2016.12.158
2 N Zhang, Y H Ding, J Y Zhang, B Fu, X L Zhang, X F Zheng, Y Z Fang. Construction of MnO2 nanowires@Ni1−xCoxOy nanoflake core-shell heterostructure for high performance supercapacitor. Journal of Alloys and Compounds, 2017, 694: 1302–1308
https://doi.org/10.1016/j.jallcom.2016.10.072
3 Y J Li, W Ou-Yang, X T Xu, M Wang, S J Hou, T Lu, Y F Yao, L K Pan. Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors. Electrochimica Acta, 2018, 271: 591–598
https://doi.org/10.1016/j.electacta.2018.03.199
4 Y J Li, G Zhu, H L Huang, M Xu, T Lu, L K. A N Pan, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(15): 9040–9050
https://doi.org/10.1039/C8TA12246F
5 X T Xu, Y Liu, M Wang, C Zhu, T Lu, R Zhao, L K Pan. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochimica Acta, 2016, 193: 88–95
https://doi.org/10.1016/j.electacta.2016.02.049
6 Z Liu, L Zhang, R G Wang, S Poyraz, J Cook, M J Bozack, S Das, X Y Zhang, L B Hu. Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Scientific Reports, 2016, 6(1): 22503
https://doi.org/10.1038/srep22503
7 Z Lu, Z Chang, W Zhu, X Sun. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chemical Communications, 2011, 47(34): 9651
https://doi.org/10.1039/c1cc13796d
8 J Xie, X Sun, N Zhang, K Xu, M Zhou, Y Xie. Layer-by-layer beta-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy, 2013, 2(1): 65–74
https://doi.org/10.1016/j.nanoen.2012.07.016
9 A Muzaffar, M B Ahamed, K Deshmukh, J Thirumalai. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renewable & Sustainable Energy Reviews, 2019, 101: 123–145
https://doi.org/10.1016/j.rser.2018.10.026
10 Q Zhang, E Uchaker, S L Candelaria, G Cao. Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42(7): 3127–3171
https://doi.org/10.1039/c3cs00009e
11 Y Wang, Y Song, Y Xia. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45(21): 5925–5950
https://doi.org/10.1039/C5CS00580A
12 N S Arul, J I Han. Enhanced pseudocapacitance of NiSe2/Ni(OH)2 nanocomposites for supercapacitor electrode. Materials Letters, 2019, 234: 87–91
https://doi.org/10.1016/j.matlet.2018.09.064
13 Z Yu, L Tetard, L Zhai, J Thomas. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730
https://doi.org/10.1039/C4EE03229B
14 N Zhang, Y F Li, J Y Xu, J J Li, B Wei, Y Ding, I Arnorim, R Thomas, S M Thalluri, Y Y Liu, et al. High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS Nano, 2019, 13(9): 10612–10621
https://doi.org/10.1021/acsnano.9b04810
15 H C Chen, S P Jiang, B H Xu, C H Huang, Y Z Hu, Y L Qin, M X He, H J Cao. Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6241–6249
https://doi.org/10.1039/C8TA11189H
16 A Panneerselvam, M A Malik, M Afzaal, P O’Brien, M Helliwell. The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. Journal of the American Chemical Society, 2008, 130(8): 2420–2421
https://doi.org/10.1021/ja078202j
17 X Li, A M Elshahawy, C Guan, J Wang. Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small, 2017, 13(39): 1701530
https://doi.org/10.1002/smll.201701530
18 H Pang, C Wei, Y Ma, S Zhao, G Li, J Zhang, J Chen, S Li. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem, 2013, 78(6): 546–553
https://doi.org/10.1002/cplu.201300015
19 Y Zhao, M Zhao, X Ding, Z R Liu, H Tian, H H Shen, X T Zu, S A Li, L Qiao. One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2019, 373: 1132–1143
https://doi.org/10.1016/j.cej.2019.05.098
20 S J Hou, X T Xu, M Wang, Y Q Xu, T Lu, Y F Yao, L K Pan. Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(369): 19054–19061
https://doi.org/10.1039/C7TA04720G
21 H Jiang, T Zhao, C Li, J Ma. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. Journal of Materials Chemistry, 2011, 21(11): 3818–3823
https://doi.org/10.1039/c0jm03830j
22 M C Liu, L B Kong, L Kang, X Li, F C Walsh, M Xing, C Lu, X J Ma, Y C Luo. Synthesis and characterization of M3V2O8 (M= Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(14): 4919–4926
https://doi.org/10.1039/c4ta00582a
23 Y L Shih, C L Wu, T Y Wu, D H Chen. Electrochemical fabrication of nickel phosphide/reduced graphene oxide/nickel oxide composite on nickel foam as a high performance electrode for supercapacitors. Nanotechnology, 2019, 30(11): 115601
https://doi.org/10.1088/1361-6528/aaf8fc
24 Z J Lv, Q Zhong, Y F Bu. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Applied Surface Science, 2018, 439: 413–419
https://doi.org/10.1016/j.apsusc.2017.12.185
25 X Zhang, M M Han, G Q Liu, G Z Wang, Y X Zhang, H M Zhang, H J Zhao. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Applied Catalysis B: Environmental, 2019, 244: 899–908
https://doi.org/10.1016/j.apcatb.2018.12.025
26 J Wang, F Ciucci. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 254: 292–299
https://doi.org/10.1016/j.apcatb.2019.05.009
27 Y Lin, J Zhang, Y Pan, Y Q Liu. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution. Applied Surface Science, 2017, 422: 828–837
https://doi.org/10.1016/j.apsusc.2017.06.102
28 J Y Xu, J J Li, D H Xiong, B S Zhang, Y F Liu, K H Wu, I Amorim, W Li, L F Liu. Trends in activity for the oxygen evolution reaction on transition metal (M= Fe, Co, Ni) phosphide precatalysts. Chemical Science (Cambridge), 2018, 9(14): 3470–3476
https://doi.org/10.1039/C7SC05033J
29 Y F Huang, P T Chiueh, W H Kuan, S L Lo. Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy, 2016, 100: 137–144
https://doi.org/10.1016/j.energy.2016.01.088
30 J Y Dong, G Lu, J S Yue, Z M Cheng, X H Kang. Valence modulation in hollow carbon nanosphere/manganese oxide composite for high performance supercapacitor. Applied Surface Science, 2019, 480: 1116–1125
https://doi.org/10.1016/j.apsusc.2019.02.245
31 S Poyraz, L Zhang, A Schroder, X Y Zhang. Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Applied Materials & Interfaces, 2015, 7(40): 22469–22477
https://doi.org/10.1021/acsami.5b06484
32 Y R Tian, H S Du, M M Zhang, Y Y Zheng, Q P Guo, H P Zhang, J J Luo, X Y Zhang. Microwave synthesis of MoS2/MoO2@CNT nanocomposites with excellent cycle stability for supercapacitor electrodes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(31): 9545–9555
https://doi.org/10.1039/C9TC02391G
33 J Low, J Yu, M Jaroniec, S Wageh, A A Al-Ghamdi. Heterojunction photocatalysts. Advanced Materials, 2017, 29(20): 1601694
https://doi.org/10.1002/adma.201601694
34 Z J Wang, Z L Jin, H Yuan, G R Wang, B Z Ma. Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting. Journal of Colloid and Interface Science, 2018, 532: 287–299
https://doi.org/10.1016/j.jcis.2018.07.138
35 S L Xie, J X Gou. Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. Journal of Alloys and Compounds, 2017, 713: 10–13
https://doi.org/10.1016/j.jallcom.2017.04.170
36 M G Hosseini, E Shahryari. Synthesis. Characterization and electrochemical study of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline electrode as supercapacitor. Journal of Materials Science and Technology, 2016, 32(8): 763–773
https://doi.org/10.1016/j.jmst.2016.05.008
37 H M Ghasem, S Elham. Anchoring RuO2 nanoparticles on reduced graphene oxide-multi-walled carbon nanotubes as a high-performance supercapacitor. Ionics, 2019, 25(5): 2383–2391
https://doi.org/10.1007/s11581-018-2668-2
38 X Yang, Y R Tian, S Sarwar, M M Zhang, H P Zhang, J J Luo, X Y Zhang. Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach. Electrochimica Acta, 2019, 311: 230–243
https://doi.org/10.1016/j.electacta.2019.04.084
39 Y H Bi, A Nautiyal, H P Zhang, J J Luo, X Y Zhang. One-pot microwave synthesis of NiO/MnO2 composite as a high performance electrode material for supercapacitors. Electrochimica Acta, 2017, 260: 952–928
https://doi.org/10.1016/j.electacta.2017.12.074
40 G Z Zhao, Y J Li, G Zhu, J Y Shi, T Lu, L K Pan. Biomass-based N, P, and S self-doped porous carbon for high performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12052–12060
https://doi.org/10.1021/acssuschemeng.9b00725
41 L Han, H L Huang, J F Li, Z L Yang, X L Zhang, D F Zhang, X J Liu, M Xu, L K Pan. Novel zinc-iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(42): 24400–24407
https://doi.org/10.1039/C9TA07196B
42 P Lou, Z Cui, Z Jia, J Sun, Y Tan, X Guo. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano, 2017, 11(4): 3705–3715
https://doi.org/10.1021/acsnano.6b08223
43 L Sun, Y Zhang, D Y Zhang, Y H Zhang. Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale, 2017, 9(46): 18552–18560
https://doi.org/10.1039/C7NR06476D
44 L Chen, H Bai, Z Huang, L Li. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy & Environmental Science, 2014, 7(5): 1750–1759
https://doi.org/10.1039/C4EE00002A
45 F Barzegar, A A Khaleed, F U Ugbo, K O Oyeniran, D Y Momodu, A Bello, J K Dangbegnon, N Manyala. Cycling and floating performance of symmetric supercapacitor derived from coconut shell biomass. AIP Advances, 2016, 6(11): 115306
https://doi.org/10.1063/1.4967348
46 C H An, Y J Wang, L Li, F Y Qiu, Y N Xu, C C Xu, Y N Huang, F Jiao, H T Yuan. Effects of highly crumpled graphene nanosheets on the electrochemical performances of pseudocapacitor electrode materials. Electrochimica Acta, 2014, 133: 180–187
https://doi.org/10.1016/j.electacta.2014.04.056
47 Y L Ding, H Alias, D S Wen, R A Williams. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 2006, 49(1): 240–250
https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
48 C Wu, P Kopold, P A van Aken, J Maier, Y Yu. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Advanced Materials, 2017, 29(3): 1604015
https://doi.org/10.1002/adma.201604015
49 Y Lu, J P Tu, Q Q Xiong, J Y Xiang, Y J Mai, J Zhang, Y Q Qiao, X L Wang, C D Gu, S X Mao. Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries. Advanced Functional Materials, 2012, 22(18): 3927–3935
https://doi.org/10.1002/adfm.201102660
50 Z X Guang, Y Huang, X F Chen, X Sun, M Y Wang, X S Feng, C Chen, X D Liu. Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 307: 260–268
https://doi.org/10.1016/j.electacta.2019.03.190
51 X Chen, M Cheng, D Chen, R Wang. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(6): 3892–3900
https://doi.org/10.1021/acsami.5b10785
52 G Qu, J Cheng, X Li, D Yuan, P Chen, X Chen, B Wang, H Peng. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Advanced Materials, 2016, 28(19): 3646–3652
https://doi.org/10.1002/adma.201600689
53 Y Y Lan, H Y Zhao, Y Zong, X H Li, Y Sun, J Feng, Y Wang, X T Zheng, Y P Du. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10(25): 11775–11781
https://doi.org/10.1039/C8NR01229F
54 D Wang, L B Kong, M C Liu, Y C Luo, L Kang. An approach to preparing Ni-P with different phases for use as supercapacitor electrode materials. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(49): 17897–17903
https://doi.org/10.1002/chem.201502269
55 F Ochai-Ejeh, M J Madito, K Makgopa, M N Rantho, O Olaniyan, N Manyala. Electrochemical performance of hybrid supercapacitor device based on birnessite-type manganese oxide decorated on uncapped carbon nanotubes and porous activated carbon nanostructures. Electrochimica Acta, 2018, 289: 363–375
https://doi.org/10.1016/j.electacta.2018.09.032
[1] FCE-20065-OF-TY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed