Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (3): 571-578   https://doi.org/10.1007/s11705-020-2010-1
  本期目录
Block copolymers as efficient cathode interlayer materials for organic solar cells
Dingqin Hu1, Jiehao Fu1, Shanshan Chen2, Jun Li3, Qianguang Yang1, Jie Gao1, Hua Tang1, Zhipeng Kan1, Tainan Duan1, Shirong Lu1(), Kuan Sun2(), Zeyun Xiao1()
1. Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, China
2. MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
3. Library & Information Center, Anhui University of Finance and Economics, Bengbu 233030, China
 全文: PDF(1315 KB)   HTML
Abstract

Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors. In addition to improving the efficiency, stability and processability issues are major challenges. Herein, we design block copolymers with well controlled chemical composition and molecular weight for cathode interlayer applications. The block copolymer coated cathodes display high optical transmittance and low work function. Conductivity studies reveal that the block copolymer thin film has abundant conductive channels and excellent longitudinal electron conductivity due to the interpenetrating networks formed by the polymer blocks. Applications of the cathode interlayers in organic solar cells provide higher power conversion efficiency and better stability compared to the most widely-applied ZnO counterparts. Furthermore, no post-treatment is needed which enables excellent processability of the block copolymer based cathode interlayer.

Key wordsorganic solar cell    block copolymer    cathode interlayer
收稿日期: 2020-06-17      出版日期: 2021-05-10
Corresponding Author(s): Shirong Lu,Kuan Sun,Zeyun Xiao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 571-578.
Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao. Block copolymers as efficient cathode interlayer materials for organic solar cells. Front. Chem. Sci. Eng., 2021, 15(3): 571-578.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-2010-1
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I3/571
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Material CIL Voltage/V Jsc/(mA?cm?2) FF/% a) PCE Max/% b) Jscc)
/(mA?cm?2)
Rs d)
/(W?cm2)
Rsh d)
/(W?cm2)
P3HT:PC61BM w/o 0.35±0.01(0.36) 9.40±0.2(9.60) 38.6±0.4(42.6) 1.25±0.1(1.47) 8.73 3.24 2.08×103
ZnO 0.63±0.00(0.63) 9.62±0.4(9.86) 65.6±1.4(66.7) 3.98±0.1(4.16) 8.97 1.68 4.09×105
P3 0.63±0.00(0.63) 10.28±0.3(10.52) 62.9±1.3(64.2) 4.06±0.1(4.25) 9.60 2.02 1.19×105
PCE13:IT-4F w/o 0.52±0.01(0.53) 16.26±0.3(16.67) 50.1±0.3(53.1) 4.13±0.3(4.69) 17.35 5.59 8.16×105
ZnO 0.81±0.01(0.82) 18.67±0.3(18.57) 72.1±0.7(72.8) 10.87±0.2(11.09) 17.92 1.08 5.71×106
P3 0.82±0.00(0.82) 19.53±0.1(19.63) 70.3±0.6(71.2) 11.26±0.1(11.45) 18.87 1.27 2.48×106
Tab.1  
Fig.5  
1 J Zhao, Y Li, G Yang, K Jiang, H Lin, H Ade, W Ma, H Yan. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1(2): 1–7
2 J Hou, O Inganäs, R H Friend, F Gao. Organic solar cells based on non-fullerene acceptors. Nature Materials, 2018, 17(2): 119–128
3 H Chen, D Hu, Q Yang, J Gao, J Fu, K Yang, H He, S Chen, Z Kan, T Duan, et al. All-small-molecule organic solar cells with an ordered liquid crystalline donor. Joule, 2019, 3(12): 3034–3047
4 W Lee, S Jeong, C Lee, G Han, C Cho, J Y Lee, B J Kim. Organic photovoltaics: self-organization of polymer additive, poly(2-vinylpyridine) via one-step solution processing to enhance the efficiency and stability of polymer solar cells. Advanced Energy Materials, 2017, 7(17): 1602812
5 K Yang, J Fu, L Hu, Z Xiong, M Li, X Wei, Z Xiao, S Lu, K Sun. Impact of ZnO photoluminescence on organic photovoltaic performance. ACS Applied Materials & Interfaces, 2018, 10(46): 39962–39969
6 Z W Seh, K D Fredrickson, B Anasori, J Kibsgaard, A L Strickler, M R Lukatskaya, Y Gogotsi, T F Jaramillo, A Vojvodic. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 2016, 1(3): 589–594
7 X Zhang, E M Johansson. Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(1): 303–310
8 J You, L Meng, T B Song, T F Guo, Y M Yang, W H Chang, Z Hong, H Chen, H Zhou, Q Chen, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11(1): 75–81
9 C E Small, S Chen, J Subbiah, C M Amb, S W Tsang, T H Lai, J R Reynolds, F So. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nature Photonics, 2012, 6(2): 115–120
10 L Nian, W Zhang, N Zhu, L Liu, Z Xie, H Wu, F Würthner, Y Ma. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. Journal of the American Chemical Society, 2015, 137(22): 6995–6998
11 W Y Tan, R Wang, M Li, G Liu, P Chen, X C Li, S M Lu, H L Zhu, Q M Peng, X H Zhu, et al. Lending triarylphosphine oxide to phenanthroline: a facile approach to high-performance organic small-molecule cathode interfacial material for organic photovoltaics utilizing air-stable cathodes. Advanced Functional Materials, 2014, 24(41): 6540–6547
12 M Li, K Gao, X Wan, Q Zhang, B Kan, R Xia, F Liu, X Yang, H Feng, W Ni, et al. Solution-processed organic tandem solar cells with power conversion efficiencies>12%. Nature Photonics, 2017, 11(2): 85–90
13 Q Zhang, B Kan, F Liu, G Long, X Wan, X Chen, Y Zuo, W Ni, H Zhang, M Li, et al. Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9(1): 35–41
14 Z He, B Xiao, F Liu, H Wu, Y Yang, S Xiao, C Wang, T P Russell, Y Cao. Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9(3): 174–179
15 B Yang, S Zhang, S Li, H Yao, W Li, J Hou. A self-organized poly (vinylpyrrolidone)-based cathode interlayer in inverted fullerene-free organic solar cells. Advanced Materials, 2019, 31(2): 1804657
16 Y Zhou, C Fuentes-Hernandez, J Shim, J Meyer, A J Giordano, H Li, P Winget, T Papadopoulos, H Cheun, J Kim, et al. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327–332
17 H Zhou, Q Chen, G Li, S Luo, T B Song, H S Duan, Z Hong, J You, Y Liu, Y Yang. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546
18 J Ge, Y Yin. Responsive photonic crystals. Angewandte Chemie International Edition, 2011, 50(7): 1492–1522
19 C J Hawker, A W Bosman, E Harth. New polymer synthesis by nitroxide mediated living radical polymerizations. Chemical Reviews, 2001, 101(12): 3661–3688
20 C J Hawker. Molecular weight control by a “living” free-radical polymerization process. Journal of the American Chemical Society, 1994, 116(24): 11185–11186
21 C Zhang, M W Bates, Z Geng, A E Levi, D Vigil, S M Barbon, T Loman, K T Delaney, G H Fredrickson, C M Bates, et al. Rapid generation of block copolymer libraries using automated chromatographic separation. Journal of the American Chemical Society, 2020, 142(21): 9843–9849
22 W Cai, D Xu, L Qian, J Wei, C Xiao, L Qian, Z Y Lu, S Cui. Force-induced transition of p-p stacking in a single polystyrene chain. Journal of the American Chemical Society, 2019, 141(24): 9500–9503
23 U Holzwarth, N Gibson. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nature Nanotechnology, 2011, 6(9): 534–534
24 L Hu, J Fu, K Yang, Z Xiong, M Wang, B Yang, H Wang, X Tang, Z Zang, M Li, et al. Inhibition of in-plane charge transport in hole transfer layer to achieve high fill factor for inverted planar perovskite solar cells. Solar RRL, 2019, 3(7): 1900104
25 W Li, L Ye, S Li, H Yao, H Ade, J Hou. A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor. Advanced Materials, 2018, 30(16): 1707170
26 G Li, V Shrotriya, J Huang, Y Yao, T Moriarty, K Emery, Y Yang. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, (11): 864–868
27 H Aqoma, S Park, H Y Park, W T Hadmojo, S H Oh, S Nho, D H Kim, J Seo, S Park, D Y Ryu, et al. 11% organic photovoltaic devices based on PTB7-Th: PC71BM photoactive layers and irradiation-assisted ZnO electron transport layers. Advancement of Science, 2018, 5(7): 1700858
28 R Azmi, W T Hadmojo, S Sinaga, C L Lee, S C Yoon, I H Jung, S Y Jang. High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Advanced Energy Materials, 2018, 8(5): 1701683
29 Y Sun, J H Seo, C J Takacs, J Seifter, A J Heeger. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Advanced Materials, 2011, 23(14): 1679–1683
30 J Fu, S Chen, K Yang, S Jung, J Lv, L Lan, H Chen, D Hu, Q Yang, T Duan, et al. A “-hole” containing volatile solid additive enabling 16.5% efficiency organic solar cells. iScience, 2020, 23(3): 100965
31 X Dong, K Yang, H Tang, D Hu, S Chen, J Zhang, Z Kan, T Duan, C Hu, X Dai, et al. Improving molecular planarity by changing alky chain position enables 12.3% efficiency all-small-molecule organic solar cells with enhanced carrier lifetime and reduced recombination. Solar RRL, 2020, 4(1): 1900326
[1] FCE-20069-OF-HD_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed