Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (9): 1407-1423   https://doi.org/10.1007/s11705-022-2146-2
  本期目录
Beta-cyclodextrin adsorbents to remove water pollutants—a commentary
Fadina Amran1,2, Muhammad Abbas Ahmad Zaini1,2()
1. Centre of Lipids Engineering & Applied Research (CLEAR), Ibnu-Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, Johor, Malaysia
2. School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
 全文: PDF(4895 KB)   HTML
Abstract

Beta-cyclodextrin-based adsorbent is a promising adsorbent because it has unique characteristics and able to form host-guest complexes with various organic compounds. Adsorption using beta-cyclodextrin-based adsorbent has continuously improved by various preparation strategies and crosslinking agents. This commentary aims to highlight the preparation strategies, properties, and adsorption mechanisms of beta-cyclodextrin-based adsorbents. The adsorbents can be generally classified according to the preparation methods and display high adsorption capacity especially for dyes. Particularly, composite/nanocomposite beta-cyclodextrin-based adsorbents exhibit outstanding adsorption capacity even though the surface area is lower than that of porous and magnetic beta-cyclodextrin-based adsorbents. The beta-cyclodextrin/chitosan functionalized graphene oxide hydrogel with specific surface of 17.6 m2·g–1 yields an extraordinarily maximum adsorption capacity of 1499 mg·g–1 methylene blue, while beta-cyclodextrin/chitosan modified with iron(II, III) oxide nanoparticles displays a much greater maximum adsorption capacity at 2780 mg·g–1. The hydrophobic interaction, functional groups, hydrogen bonding, and electrostatic interaction govern the adsorption to a greater capacity. Although this commentary is not exhaustive, the preparation strategies and illustrated mechanisms provide useful insights into the adsorbent–adsorbate interactions, cost-effective analysis, challenges, and future directions of beta-cyclodextrin-based adsorbents in wastewater treatment.

Key wordsbeta-cyclodextrin adsorbent    adsorption    inclusion complex    mechanism    water pollutant    wastewater treatment
收稿日期: 2021-07-28      出版日期: 2022-09-20
Corresponding Author(s): Muhammad Abbas Ahmad Zaini   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1407-1423.
Fadina Amran, Muhammad Abbas Ahmad Zaini. Beta-cyclodextrin adsorbents to remove water pollutants—a commentary. Front. Chem. Sci. Eng., 2022, 16(9): 1407-1423.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2146-2
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I9/1407
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Adsorbent Yield/% Brunauer–Emmett–Teller surface area/(m2·g−1) Operating conditions (Temp, time, pH, Conc., dosage) Model pollutant Qm/(mg·g−1) b/(L·mg−1) Ref.
Citric acid crosslinked β-CD 59.4 0.1 T = 25 °Ct = 2.33−31.7 hCo = 1.50−219 mg·L−1Dosage = 1 mg·mL−1 Methylene blueCongo red 5.7612.5 0.4030.278 [5]
Citric acid crosslinked β-CD 56.1 0.1 T = 25 °Ct = 4.17−50 hCo = 1.6−24.6 mg·L−1pH = 7Dosage = 1 mg·mL−1 Methylene blueReactive orange 16 2.188.78 [4]
Citric acid-crosslinked β-CD 66.9 0.81 T = 25 °Ct = 2.83−5 hCo = 4−1000 mg·L−1pH = 6Dosage = 1 mg·mL−1 Bisphenol AMethylene blueCopper ions 82.924843.7 0.5660.4440.0765 [3]
Citric acid-crosslinked β-CD 30 T = 30 °Ct = 1.5 hCo = 54.9 mg·L−1Dosage = 4 mg·mL−1 Aniline 4.4 [30]
Citric acid-crosslinked β-CD 65 T = 30 °Ct = 8.16−10.8 hCo = 5−480 mg·L−1Dosage = 4 mg·mL−1 PhenolMethylene blue 13.8105 [23]
Crosslinked β-CD polymer 35 T = 25 °Ct = 40 minCo = 22.8−228 mg·L−1Dosage = 1 mg·mL−1 Bisphenol A 113 0.133 [29]
Amphoteric β-CD-based adsorbent T = 25 °Ct = 2−5 hCo = 25−500 mg·L−1pH = 4−11Dosage = 1 mg·mL−1 Bisphenol AMethylene blueMethyl orange 79.0336166 0.03280.03470.0334 [32]
Crosslinked sawdust-β-CD polymers 72.4 0.11 T = 15 °Ct = 4 hCo = 20−1200 mg·L−1pH = 7Dosage = 5 mg·mL−1 Aniline 84.0 [62]
Crosslinked 1,2,3,4-butanetetracarboxylic dianhydride/β-CD T = 25 °Ct = 24 hCo = 0−114 mg·L−1Dosage = 1 mg·mL−1 Bisphenol A 57.0 [35]
Ethylenediaminetetraacetic acid-crosslinked β-CD T = 25 °Ct = 23.3 hCo = 10−500 mg·L−1pH = 6Dosage = 2 mg·mL−1 Copper(II)Cadmium(II)Methylene blueSafranin OCrystal violet 78.912483.859.3114 0.2010.09680.08740.2120.0886 [12]
β-CD-derived polymer networks 64 < 10 T = 25 °Ct = 24 hCo = 11.4−457 mg·L−1Dosage = 0.8 mg·mL−1 Bisphenol A 388 [36]
4,4’-(Hexafluoroisopropene) diphthalic acid-crosslinked β-CD 64 0.56 T = 25 °Ct = 3 hCo = 20−200 mg·L−1pH = 6Dosage = 1 mg·mL−1 Bisphenol AMethylene blueNeutral red 51.7113107 1.74 × 10−52.62 × 10−48.16 × 10−5 [37]
β-CD/ tetrafluoroterephthalonitrile 21.1 T = 25 °Ct = 2 hCo = 25−350 mg·L−1pH = 6.7Dosage = 0.5 mg·mL−1 Bisphenol AChloroxylenolCarbamazepine 164144136 0.0250.0280.013 [38]
Hyper-crosslinked β-CD 88 1209 T = 25 °Ct = 12 hCo = 5−150 mg·L−1Dosage = 0.25 mg·mL−1 Bisphenol A 278 [31]
Porous β-CD polymer 20 263 T = 25 °Ct = 10 minCo = 22.8 mg·L−1Dosage = 1 mg·mL−1 Bisphenol A 88 0.247 [43]
Ethylenediaminetetraa-cetic acid-crosslinked β-CD polymer grafted onto Fe-Al hydroxides 325 T = 30 °Ct = 5 hCo = 40−180 mg·L−1pH = 8Dosage = 2 mg·mL−1 Methylene blue 81.3 5.38 × 10−5 [13]
β-CD grafted silica gel 27.2 g T = 30 °Ct = 2 hCo = 100−4000 mg·L−1pH = 8.5Dosage = 10 mg·mL−1 p-Nitrophenol 57.9 5.67 × 10−4 [44]
Magnetic molecularly imprinted polymer methacrylic acid-β-CD 92.1 T = 25 °Ct = 1 hCo = 10−100 mg·L−1pH = 8Dosage = 2 mg·mL−1 Bisphenol A 66.2 0.147 [46]
β-CD/chitosan functionalized graphene oxide hydrogel 17.6 T = 25 °C t = 4 hCo = 50−300 mg·L−1 pH = 12Dosage = 0.2 mg·mL−1 Methylene blue 1499 0.035 [16]
Graphene oxide-β-CD nanocomposite T = 25 °Ct = 20 minCo = 100−200 mg·L−1pH = 9Dosage = 0.4 mg·mL−1 Bisphenol A 373 4.25 [28]
Crosslinked chitosan/β-CD composite T = 25 °Ct = 10 hCo = 25−700 mg·L−1pH = 5Dosage = 0.2 mg·mL−1 Methyl orange 392 0.0812 [11]
Graphene/β-CD composite T = 25 °Ct = 35 minCo = 5−1000 mg·L−1Dosage = 1 mg·mL−1 PhenolphthaleinMethylene blueMethyl orangeBasic fuchsin 469580328426 0.065−−− [7]
β-CD/poly(acrylic acid)/graphene oxide nanocomposite T = 25 °Ct = 2.5 hCo = 5−200 mg·L−1pH = 8Dosage = 0.7 mg·mL−1 Methylene blueSafranine T 262189 0.1340.0523 [47]
Nanosilica-supported poly β-CD T = 25 °Ct = 1.33 hCo = 20−100 mg·L−1pH = 7Dosage = 1 mg·mL−1 Bromophenol blueCrystal violet 41.234.5 1.07 × 10−30.0125 [48]
β-CD-glycine- modified TiO2 nanoparticles 146 T = 25 °Ct = 1 hCo = 20−100 mg·L−1pH = 5?9Dosage = 1 mg·mL−1 Methylene blueMethyl orangeAcid blue 113Disperse red 1 82.038576.9139 0.1970.0110.2140.533 [8]
β-CD/citric acid/ polydopamine composite 6.52 T = 25 °Ct = 12 hCo = 100−500 mg·L−1pH = 5−5.5Dosage = 1 mg·mL−1 Methylene blueMalachite greenCrystal violetCopper ion 583117447373.6 0.03810.00320.00430.196 [49]
Magnetic β-CD stabilized Fe3S4 nanoparticles T = 25 °Ct = 24 hCo = 5−500 mg·L−1pH = 6Dosage = 0.6 mg·mL−1 Lead(II) 256 0.049 [63]
β-CD-chitosan modified Fe3O4 nanoparticles T = 30 °Ct = 50 minCo = 2000−5000 mg·L−1pH = 5Dosage = 0.6 mg·mL−1 Methylene blue 2780 [14]
Magnetic β-CD/ graphene oxide nanocomposite 451 T = 25 °Ct = 50 minCo = 10−100 mg·L−1pH = 7Dosage = 1 mg·mL−1 Chromium ion 120 [9]
Magnetic β-CD- chitosan/graphene oxide 402 T = 25 °Ct = 1.33 hCo = 5−120 mg·L−1Dosage = 0.4 mg·mL−1 Methylene blue 84.3 [10]
Carboxymethyl-β-CD modified Fe3O4 nanoparticles 111 T = 25 °Ct = 4 hCo = 50−400 mg·L−1pH = 6Dosage = 12 mg·mL−1 Copper ions 47.2 0.0237 [52]
Carboxymethyl-β-CD conjugated magnetic nanoparticles T = 25 °Ct = 2−2.5 hCo = 100−3000 mg·L−1pH = 12Dosage = 26 mg·mL−1 Methylene blue 278 9.00 × 10−3 [53]
Carboxymethyl-β-CD modified Fe3O4 nanoparticles 60 T = 25 °C t = 4 hCo = 50−400 mg·L−1pH = 5.5Dosage = 12 mg·mL−1 LeadCadmiumNickel 64.527.713.2 0.4170.2140.043 [6]
Magnetic β-CD-graphene oxide nanocomposites T = 45 °Ct = 2 hCo = 50−700 mg·L−1pH = 7Dosage = 0.25 mg·mL−1 Malachite green 990 0.0099 [15]
Ammonium β-CD-conjugatedmagnetic nanoparticles 72.3 T = 40 °Ct = 2.5−3.33 hCo = 5−250 mg·L−1pH = 6.8Dosage = 0.6 mg·mL−1 Congo redChromium(VI) 877196 3.00 × 10−55.1 × 10−3 [54]
Magnetic copper-based metal-organic framework 250 T = 25 °Ct = 2 hCo = 0.5−100 mg·L−1Dosage = 5 mg·mL−1 ThiamethoxamImidacloparidAcetamipridNitenpyramDinotefuranClothianidin 2.883.112.962.561.772.88 [51]
Tab.1  
Fig.5  
1 F D Natale, A Erto, D Musmarra. Experimental and modelling analysis of As(V) ions adsorption on granular activated carbon. Water Research, 2008, 42( 8-9): 2007– 2016
https://doi.org/10.1016/j.watres.2007.12.008
2 Z Wang, T T Li, H K Peng, H T Ren, C W Lou, J H Lin. Low-cost hydrogel adsorbent enhanced by trihydroxy melamine and β-cyclodextrin for the removal of Pb(II) and Ni(II) in water. Journal of Hazardous Materials, 2021, 411 : 125029
https://doi.org/10.1016/j.jhazmat.2020.125029
3 W Huang, Y Hu, Y Li, Y Zhou, D Niu, Z Lei, Z Zhang. Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: the roles of cavity and surface functional groups. Journal of the Taiwan Institute of Chemical Engineers, 2018, 2018( 82): 189– 197
https://doi.org/10.1016/j.jtice.2017.11.021
4 M M Ariff, M A A Zaini. Carbon-based beta-cyclodextrin adsorbent for methylene blue and reactive orange 16 removal from water. Acta Chemica Iasi, 2020, 28( 1): 19– 30
https://doi.org/10.2478/achi-2020-0002
5 N S Sulaiman, M A A Zaini, A Arsad. Evaluation of dyes removal by beta-cyclodextrin adsorbent. Materials Today, 2021, 39( 2): 907– 910
6 A Z M Badruddoza, Z B Z Shawon, T W J Daniel, K Hidajat, M S Uddin. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydrate Polymers, 2013, 91( 1): 322– 332
https://doi.org/10.1016/j.carbpol.2012.08.030
7 P Tan, Y Hu. Improved synthesis of graphene/β-cyclodextrin composite for highly efficient dye adsorption and removal. Journal of Molecular Liquids, 2017, 242 : 181– 189
https://doi.org/10.1016/j.molliq.2017.07.010
8 S H Mousavi, A Mohammadi. A cyclodextrin/glycine-functionalized TiO2 nanoadsorbent: synthesis, characterization and application for the removal of organic pollutants from water and real textile wastewater. Process Safety and Environmental Protection, 2018, 114 : 1– 15
https://doi.org/10.1016/j.psep.2017.12.004
9 L Fan, C Luo, M Sun, H Qiu. Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. Journal of Materials Chemistry, 2012, 22( 47): 24577– 24583
https://doi.org/10.1039/c2jm35378d
10 L Fan, C Luo, M Sun, H Qiu, X Li. Synthesis of magnetic beta-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surfaces B: Biointerfaces, 2013, 103 : 601– 607
https://doi.org/10.1016/j.colsurfb.2012.11.023
11 Y Jiang, B Liu, J Xu, K Pan, H Hou, J Hu, J Yang. Crosslinked chitosan/β-cyclodextrin composite for selective removal of methyl orange: adsorption performance and mechanism. Carbohydrate Polymers, 2018, 182 : 106– 114
https://doi.org/10.1016/j.carbpol.2017.10.097
12 F Zhao, E Repo, D Yin, Y Meng, S Jafari, M Sillanpaa. EDTA-crosslinked β-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environmental Science & Technology, 2015, 49( 17): 10570– 10580
https://doi.org/10.1021/acs.est.5b02227
13 N Liu, Y Wu, H Sha. Characterization of EDTA-crosslinked β-cyclodextrin grafted onto Fe–Al hydroxides as an efficient adsorbent for methylene blue. Journal of Colloid and Interface Science, 2018, 516 : 98– 109
https://doi.org/10.1016/j.jcis.2018.01.056
14 L Fan, Y Zhang, C Luo, F Lu, H Qiu, M Sun. Synthesis and characterization of magnetic β-cyclodextrin-chitosan nanoparticles as nano-adsorbents for removal of methyl blue. International Journal of Biological Macromolecules, 2012, 50( 2): 444– 450
https://doi.org/10.1016/j.ijbiomac.2011.12.016
15 D Wang, L Liu, X Jiang, J Yu, X Chen. Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 466 : 166– 173
https://doi.org/10.1016/j.colsurfa.2014.11.021
16 Y Liu, S Huang, X Zhao, Y Zhang. Fabrication of three-dimensional porous β-cyclodextrin/chitosan functionalized graphene oxide hydrogel for methylene blue removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539 : 1– 10
https://doi.org/10.1016/j.colsurfa.2017.11.066
17 Q Liu, Y Zhou, Y Zhou. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review. Chemosphere, 2019, 241 : 125043
https://doi.org/10.1016/j.chemosphere.2019.125043
18 B Tian, S Hua, Y Tian, J Liu. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review. Environmental Science and Pollution Research International, 2020, 28( 2): 1317– 1340
https://doi.org/10.1007/s11356-020-11168-2
19 D M Alzate-Sanchez, B J Smith, A Alsbaiee, J P Hinestroza, W R Dichtel. Cotton fabric functionalized with a β-cyclodextrin polymer captures organic pollutants from comtaminated air and water. Chemistry of Materials, 2016, 28( 22): 8340– 8346
https://doi.org/10.1021/acs.chemmater.6b03624
20 Z Yang, J Liu, X Yao, Z Rui, H Ji. Efficient removal of BTEX from aqueous solution by β-cyclodextrin modified poly(butymethacrylate) resin. Separation and Purification Technology, 2016, 158 : 417– 421
https://doi.org/10.1016/j.seppur.2015.12.027
21 N Morin-Crini, G Crini. Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers. Progress in Polymer Science, 2012, 38( 2): 344– 368
https://doi.org/10.1016/j.progpolymsci.2012.06.005
22 M Sahraoui, A Abderrahmen, R Mlika, H B Ouada, A Gharbi. Dielectric relaxation behaviour of nematic liquid crystal cell using β-cyclodextrin as an alignment layer. Mediterranean Journal of Chemistry, 2016, 5( 1): 347– 355
https://doi.org/10.13171/mjc.5.1/0160209/sahraoui
23 D Zhao, L Zhao, C Zhu, W Huang, J Hu. Water-insoluble β-cyclodextrin polymer crosslinked by citric acid: synthesis and adsorption properties toward phenol and methylene blue. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 63( 3-4): 195– 201
https://doi.org/10.1007/s10847-008-9507-4
24 G Crini. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 2005, 30( 1): 38– 70
https://doi.org/10.1016/j.progpolymsci.2004.11.002
25 G Crini, H N Peindy. Adsorption of C. I. Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes and Pigments, 2006, 70( 3): 204– 211
https://doi.org/10.1016/j.dyepig.2005.05.004
26 G Crini. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes and Pigments, 2008, 77( 2): 415– 426
https://doi.org/10.1016/j.dyepig.2007.07.001
27 S Mak, D Chen. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes and Pigments, 2004, 61( 1): 93– 98
https://doi.org/10.1016/j.dyepig.2003.10.008
28 V K Gupta, S Agarwal, H Sadegh, G A M Ali, A K Bharti, A S Hamdy. Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. Journal of Molecular Liquids, 2017, 237 : 466– 472
https://doi.org/10.1016/j.molliq.2017.04.113
29 Z Wang, P Zhang, F Hu, Y Zhao, L Zhu. A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohydrate Polymers, 2017, 177 : 224– 231
https://doi.org/10.1016/j.carbpol.2017.08.059
30 D Zhao, L Zhao, C Zhu, Z Tian, X Shen. Synthesis and properties of water-insoluble β-cyclodextrin polymer crosslinked by citric acid with PEG-400 as modifier. Carbohydrate Polymers, 2009, 78( 1): 125– 130
https://doi.org/10.1016/j.carbpol.2009.04.022
31 X Li, M Zhou, J Jia, J Ma, Q Jia. Design of a hyper-crosslinked β-cyclodextrin porous polymer for highly efficient removal toward bisphenol A from water. Separation and Purification Technology, 2018, 195 : 130– 137
https://doi.org/10.1016/j.seppur.2017.12.007
32 Y Zhou, Y Hu, W Huang, G Cheng, C Cui, J Lu. A novel amphoteric β-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A. Chemical Engineering Journal, 2018, 341 : 47– 57
https://doi.org/10.1016/j.cej.2018.01.155
33 Y Zhou, R Zhang, K Chen, X Zhao, X Gu, J Lu. Enhanced adsorption and photo-degradation of bisphenol A by β-cyclodextrin modified pine sawdust in an aquatic environment. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78 : 510– 616
https://doi.org/10.1016/j.jtice.2017.06.025
34 G Crini, M Morcellet. Synthesis and applications of adsorbents containing cyclodextrins. Journal of Separation Science, 2002, 25( 13): 789– 813
https://doi.org/10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J
35 H Kono, T Nakamura. Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: synthesis, structural characterization, and bisphenol A adsorption capacity. Reactive & Functional Polymers, 2013, 73( 8): 1096– 1102
https://doi.org/10.1016/j.reactfunctpolym.2013.04.006
36 B Philips, C Wang, X Tu, C Chang, S Banerjee, M Al-Hashimi, W Hu, L Fang. Cyclodextrin-derived polymer networks for selective molecular adsorption. Chemical Communications, 2020, 56( 79): 11783– 11786
https://doi.org/10.1039/D0CC04784H
37 J Wang, G Cheng, J Lu, H Chen, Y Zhou. PDA-crosslinked beta-cyclodextrin: a novel adsorbent for the removal of BPA and cationic dyes. Water Science and Technology, 2020, 81( 11): 2337– 2350
38 Y Zhou, G Cheng, K Chen, J Lu, J Lei, S Pu. Adsorptive removal of bisphenol A, chloroxylenol, and carbamazepine from water using a novel β-cyclodextrin polymer. Ecotoxicology and Environmental Safety, 2019, 170 : 278– 285
https://doi.org/10.1016/j.ecoenv.2018.11.117
39 G Xiao, L Fu, A Li. Enhanced adsorption of bisphenol A from water by acetylaniline modified hyper-cross-linked polymeric adsorbent: effect of the cross-linked bridge. Chemical Engineering Journal, 2012, 191 : 171– 176
https://doi.org/10.1016/j.cej.2012.02.092
40 P W Seo, B N Bhadra, I Ahmed, N A Khan, S H Jhung. Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: remarkable adsorbents with hydrogen-bonding abilities. Scientific Reports, 2016, 6( 1): 334462
https://doi.org/10.1038/srep34462
41 Y Li, C Yang, X Yan. Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chemical Communications, 2017, 53( 16): 2511– 2514
https://doi.org/10.1039/C6CC10188G
42 L Tan, B Tan. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chemical Society Reviews, 2017, 46( 11): 3322– 3356
https://doi.org/10.1039/C6CS00851H
43 A Alsbaiee, B J Smith, L Xiao, Y Ling, D E Helbling, W R Dichtel. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature, 2016, 529( 7585): 190– 194
https://doi.org/10.1038/nature16185
44 H Shen, G Zhu, W Yu, H Wu, H Ji, H Shi, Y She, Y Zheng. Fast adsorption of p-nitrophenol from aqueous solution using β-cyclodextrin grafted silica gel. Applied Surface Science, 2015, 356 : 1155– 1167
https://doi.org/10.1016/j.apsusc.2015.08.203
45 A H Kamel, S G Mohammad, N S Awwad, Y Y Mohammed. Survey on the integration of molecularly imprinted polymers as artificial receptors in potentiometric transducers for pharmaceutical drugs. International Journal of Electrochemical Science, 2019, 14 : 2085– 2124
https://doi.org/10.20964/2019.02.23
46 S Mamman, F B M Suah, M Raaov, F S Mehamod, S Asman, N N M Zain. Removal of bisphenol A from aqueous media using a highly selective adsorbent of hybridization cyclodextrin with magnetic molecularly imprinted polymer. Royal Society Open Science, 2021, 8( 3): 201604
https://doi.org/10.1098/rsos.201604
47 J Liu, G Liu, W Liu. Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chemical Engineering Journal, 2014, 257 : 299– 308
https://doi.org/10.1016/j.cej.2014.07.021
48 J Chen, Y Pu, Z Wang, J Han, Y Zhong, K Liu. Synthesis of a novel nanosilica-supported poly β-cyclodextrin sorbent and its properties for the removal of dyes from aqueous solution. Colloids and Surfaces A: Physicochem, 2018, 538 : 808– 817
https://doi.org/10.1016/j.colsurfa.2017.11.048
49 H Chen, Y Zhou, J Wang, J Lu, Y Zhou. Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+. Journal of Hazardous Materials, 2020, 389 : 121897
https://doi.org/10.1016/j.jhazmat.2019.121897
50 J Zhu, J He, X Du, R Lu, L Huang, X Ge. A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host–guest inclusion studies. Applied Surface Science, 2011, 257( 21): 9056– 9062
https://doi.org/10.1016/j.apsusc.2011.05.099
51 G Liu, L Li, D Xu, X Huang, X Xu, S Zheng, Y Zhang, H Lin. Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydrate Polymers, 2017, 175 : 584– 591
https://doi.org/10.1016/j.carbpol.2017.06.074
52 A Z M Badruddoza, A S H Tay, P Y Tan, K Hidajat, M S Uddin. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. Journal of Hazardous Materials, 2011, 185( 2-3): 1177– 1186
https://doi.org/10.1016/j.jhazmat.2010.10.029
53 A Z M Badruddoza, G S S Hazel, K Hidajat, M S Uddin. Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 367( 1-3): 85– 95
https://doi.org/10.1016/j.colsurfa.2010.06.018
54 D Cai, T Zhang, F Zhang, X Luo. Quaternary ammonium β-cyclodextrin-conjugated magnetic nanoparticles as nano-adsorbents for the treatment of dyeing wastewater: synthesis and adsorption studies. Journal of Environmental Chemical Engineering, 2017, 5( 3): 2869– 2878
https://doi.org/10.1016/j.jece.2017.06.001
55 G Crini, H N Peindy, F Gimbert, C Robert. Removal of C. I. basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Separation and Purification Technology, 2007, 53( 1): 97– 110
https://doi.org/10.1016/j.seppur.2006.06.018
56 J Szejtli. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 1998, 98( 5): 1743– 1753
https://doi.org/10.1021/cr970022c
57 F Amran, M A A Zaini. Correlations between pore textures of activated carbons and Langmuir constants—case studies on methylene blue and Congo red adsorption. Toxin Reviews, 2022, 41( 1): 315– 325
https://doi.org/10.1080/15569543.2020.1848871
58 M A Al-Ghouti, R S Al-Absi. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Scientific Reports, 2020, 10( 1): 15928
https://doi.org/10.1038/s41598-020-72996-3
59 M Khodaie, N Ghasemi, B Moradi, M Rahimi. Removal of methylene blue from wastewater by adsorption onto ZnCl2 activated corn husk carbon equilibrium studies. Journal of Chemistry, 2013, 2013 : 1– 6
https://doi.org/10.1155/2013/383985
60 I D Mall, V C Srivastava, N K Agarwal, I M Mishra. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264( 1-3): 17– 28
https://doi.org/10.1016/j.colsurfa.2005.03.027
61 E Illes, E Tombacz. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science, 2006, 295( 1): 115– 123
https://doi.org/10.1016/j.jcis.2005.08.003
62 Q Hu, D Gao, H Pan, L Hao, P Wang. Equilibrium and kinetics of aniline adsorption onto crosslinked sawdust-cyclodextrin polymers. RSC Advances, 2014, 4( 75): 40071– 40077
https://doi.org/10.1039/C4RA05653A
63 L Kong, L Yan, Z Qu, N Yan, L Li. β-Cyclodextrin stabilized magnetic Fe3S4 nanoparticles for efficient removal of Pb(II). Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 30): 1– 9
https://doi.org/10.1039/C5TA03442F
64 P Bradder, S K Ling, S Wang, S Liu. Dye adsorption on layered graphite oxide. Journal of Chemical & Engineering Data, 2011, 56( 1): 138– 141
https://doi.org/10.1021/je101049g
65 Y Wang, A Zhou. Spectroscopic studies on the binding of methylene blue with DNA by means of cyclodextrin supramolecular systems. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190( 1): 121– 127
https://doi.org/10.1016/j.jphotochem.2007.03.020
66 V K Gupta, I Tyagi, H Sadegh, R Shahryari-Ghoshekandi, A S H Makhlouf, B Maazinejad. Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Science, Technology and Development, 2015, 34( 3): 195– 214
https://doi.org/10.3923/std.2015.195.214
67 V K Gupta, I Tyagia, S Agarwal, O Moradi, H Sadegh, R Shahryari-ghoshekandi, A S H Makhlouf, M Goodarzi, A Garshasbi. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Critical Reviews in Environmental Science and Technology, 2016, 46( 2): 93– 118
https://doi.org/10.1080/10643389.2015.1061874
68 P A Denis, F Iribarne. A first-principles study on the interaction between alkyl radicals and graphene. Chemistry—A European Journal, 2012, 18( 24): 7568– 7574
https://doi.org/10.1002/chem.201103711
69 L Ji, W Chen, Z Xu, S Zheng, D Zhu. Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution. Journal of Environmental Quality, 2013, 42( 1): 191– 198
https://doi.org/10.2134/jeq2012.0172
70 J Yu, X Zhao, H Yang, X Chen, Q Yang, L Yu, J Jiang, X Chen. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Science of the Total Environment, 2014, 482-483 : 241– 251
https://doi.org/10.1016/j.scitotenv.2014.02.129
71 C Duan, T Ma, J Wang, Y Zhou. Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. Journal of Water Process Engineering, 2020, 37 : 101339
https://doi.org/10.1016/j.jwpe.2020.101339
72 Y Zhou, J He, J Lu, Y Liu, Y Zhou. Enhanced removal of bisphenol A by cyclodextrin in photocatalytic systems: degradation intermediates and toxicity evaluation. Chinese Chemical Letters, 2020, 31( 10): 2623– 2626
https://doi.org/10.1016/j.cclet.2020.02.008
73 Y Zhou, Q Liu, J Lu, J He, Y Liu, Y Zhou. Accelerated photoelectron transmission by carboxymethyl β-cyclodextrin for organic contaminants removal: an alternative to noble metal catalyst. Journal of Hazardous Materials, 2020, 393 : 122414
https://doi.org/10.1016/j.jhazmat.2020.122414
74 W Zhou, X Meng, J Gao, H Zhao, G Zhao, J Ma. Electrochemical regeneration of carbon-based adsorbents: a review of regeneration mechanisms, reactors, and future prospects. Chemical Engineering Journal Advances, 2021, 5 : 100083
https://doi.org/10.1016/j.ceja.2020.100083
75 G L Dotto, G Mckay. Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 2020, 8( 4): 103988
https://doi.org/10.1016/j.jece.2020.103988
[1] Supplementary materials Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed