Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (10): 1485-1492   https://doi.org/10.1007/s11705-022-2169-8
  本期目录
A density functional theory study of methane activation on MgO supported Ni9M1 cluster: role of M on C–H activation
Juntian Niu1(), Haiyu Liu1, Yan Jin1, Baoguo Fan1, Wenjie Qi2, Jingyu Ran3
1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400050, China
3. Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
 全文: PDF(7528 KB)   HTML
Abstract

Methane activation is a pivotal step in the application of natural gas converting into high-value added chemicals via methane steam/dry reforming reactions. Ni element was found to be the most widely used catalyst. In present work, methane activation on MgO supported Ni–M (M = Fe, Co, Cu, Pd, Pt) cluster was explored through detailed density functional theory calculations, compared to pure Ni cluster. CH4 adsorption on Cu promoted Ni cluster requires overcoming an energy of 0.07 eV, indicating that it is slightly endothermic and unfavored to occur, while the adsorption energies of other promoters M (M = Fe, Co, Pd and Pt) are all higher than that of pure Ni cluster. The role of M on the first C–H bond cleavage of CH4 was investigated. Doping elements of the same period in Ni cluster, such as Fe, Co and Cu, for C–H bond activation follows the trend of the decrease of metal atom radius. As a result, Ni–Fe shows the best ability for C–H bond cleavage. In addition, doping the elements of the same family, like Pd and Pt, for CH4 activation is according to the increase of metal atom radius. Consequently, C–H bond activation demands a lower energy barrier on Ni–Pt cluster. To illustrate the adsorptive dissociation behaviors of CH4 at different Ni–M clusters, the Mulliken atomic charge was analyzed. In general, the electron gain of CH4 binding at different Ni–M clusters follows the sequence of Ni–Cu (–0.02 e) < Ni (–0.04 e) < Ni–Pd (–0.08 e) < Ni–Pt (–0.09 e) < Ni–Co (–0.10 e) < Ni–Fe (–0.12 e), and the binding strength between catalysts and CH 4 raises with the CH4 electron gain increasing. This work provides insights into understanding the role of promoter metal M on thermal-catalytic activation of CH4 over Ni/MgO catalysts, and is useful to interpret the reaction at an atomic scale.

Key wordsCH4 dissociation    Ni–M    C–H bond activation    charge transfer
收稿日期: 2021-12-10      出版日期: 2022-10-17
Corresponding Author(s): Juntian Niu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1485-1492.
Juntian Niu, Haiyu Liu, Yan Jin, Baoguo Fan, Wenjie Qi, Jingyu Ran. A density functional theory study of methane activation on MgO supported Ni9M1 cluster: role of M on C–H activation. Front. Chem. Sci. Eng., 2022, 16(10): 1485-1492.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2169-8
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I10/1485
Fig.1  
Bond Gas phase Ni Fe Co Cu Pd Pt
C?H1 1.093 1.096 1.093 1.095 1.097 1.102 1.096
C?H2 1.093 1.095 1.095 1.095 1.096 1.096 1.094
C?H3 1.093 1.094 1.096 1.096 1.093 1.096 1.094
C?H4 1.093 1.101 1.098 1.098 1.093 1.096 1.103
C?Ni/M 3.077 3.663 3.608 3.530 3.247 3.123
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
CH4 Cu Ni Pd Pt Co Fe
Electron gain/e –0.02 –0.04 –0.08 –0.09 –0.10 –0.12
Adsorption energy/eV 0.07 –0.02 –0.99 –1.20 –1.62 –2.08
Tab.2  
Fig.10  
1 B Lin, Y Kuang. Natural gas subsidies in the industrial sector in China: national and regional perspectives. Applied Energy, 2020, 260 : 114329
https://doi.org/10.1016/j.apenergy.2019.114329
2 S Dale. BP Energy Outlook 2018. BP Website, 2018
3 W Taifan, J Baltrusaitis. CH4 conversion to value added products: potential, limitations and extensions of a single step heterogeneous catalysis. Applied Catalysis B: Environmental, 2016, 198 : 525– 547
https://doi.org/10.1016/j.apcatb.2016.05.081
4 P Schwach, X Pan, X Bao. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117( 13): 8497– 8520
https://doi.org/10.1021/acs.chemrev.6b00715
5 Y Song, E Ozdemir, S Ramesh, A Adishev, S Subramanian, A Harale, M Albuali, B A Fadhel, A Jamal, D Moon, S H Choi, C T Yavuz. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science, 2020, 367( 6479): 777– 781
https://doi.org/10.1126/science.aav2412
6 L C Buelens, V V Galvita, H Poelman, C Detavernier, G B Marin. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science, 2016, 354( 6311): 449– 452
https://doi.org/10.1126/science.aah7161
7 H Liu, D Wierzbicki, R Debek, M Motak, T Grzybek, Costa P Da, M E Gálvez. La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures. Fuel, 2016, 182 : 8– 16
https://doi.org/10.1016/j.fuel.2016.05.073
8 H Wang, D W Blaylock, A H Dam, S E Liland, K R Rout, Y A Zhu, W H Green, A Holmen, D Chen. Steam methane reforming on a Ni-based bimetallic catalyst: density functional theory and experimental studies of the catalytic consequence of surface alloying of Ni with Ag. Catalysis Science & Technology, 2017, 7( 8): 1713– 1725
https://doi.org/10.1039/C7CY00101K
9 J Niu, Y Wang, Y Qi, A H Dam, H Wang, Y A Zhu, A Holmen, J Ran, D Chen. New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study. Fuel, 2020, 266 : 117143
https://doi.org/10.1016/j.fuel.2020.117143
10 J Niu, J Ran, D Chen. Understanding the mechanism of CO2 reforming of methane to syngas on Ni@Pt surface compared with Ni(111) and Pt(111). Applied Surface Science, 2020, 513 : 145840
https://doi.org/10.1016/j.apsusc.2020.145840
11 J Niu, X Du, J Ran, R Wang. Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling. Applied Surface Science, 2016, 376 : 79– 90
https://doi.org/10.1016/j.apsusc.2016.01.212
12 R Dębek, M Motak, D Duraczyska, F Launay, M E Galvez, T Grzybek, Costa P Da. Methane dry reforming over hydrotalcite-derived Ni–MgAl mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability. Catalysis Science & Technology, 2016, 6( 17): 6705– 6715
https://doi.org/10.1039/C6CY00906A
13 S Li, J Gong. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chemical Society Reviews, 2014, 43( 21): 7245– 7256
https://doi.org/10.1039/C4CS00223G
14 J Niu, S E Liland, J Yang, K R Rout, J Ran, D Chen. Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane. Chemical Engineering Journal, 2019, 377 : 119763
https://doi.org/10.1016/j.cej.2018.08.149
15 J M Wei, E Iglesia. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. Journal of Catalysis, 2004, 224( 2): 370– 383
https://doi.org/10.1016/j.jcat.2004.02.032
16 L Foppa, T Margossian, S M Kim, C Müller, C Copéret, K Larmier, A Comas-Vives. Contrasting the role of Ni/Al2O3 interfaces in water-gas shift and dry reforming of methane. Journal of the American Chemical Society, 2017, 139( 47): 17128– 17139
https://doi.org/10.1021/jacs.7b08984
17 J Niu, H Liu, Y Jin, B Fan, W Qi, J Ran. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: insights from experimental work and theoretical analysis. International Journal of Hydrogen Energy, 2022, 47( 15): 9183– 9200
https://doi.org/10.1016/j.ijhydene.2022.01.021
18 M D Marcinkowski, M T Darby, J Liu, J M Wimble, F R Lucci, S Lee, A Michaelides, M Flytzani-Stephanopoulos, M Stamatakis, E C H Sykes. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nature Chemistry, 2018, 10( 3): 325– 332
https://doi.org/10.1038/nchem.2915
19 Y Huang, J Du, C Ling, T Zhou, S Wang. Methane dehydrogenation on Au/Ni surface alloys—a first-principles study. Catalysis Science & Technology, 2013, 3( 5): 1343– 1354
https://doi.org/10.1039/c3cy20802h
20 H Liu, R Yan, R Zhang, B Wang, K Xie. A DFT theoretical study of CH4 dissociation on gold-alloyed Ni(111) surface. Journal of Natural Gas Chemistry, 2011, 20( 6): 611– 617
https://doi.org/10.1016/S1003-9953(10)60252-6
21 J Niu, J Ran, X Du, W Qi, P Zhang, L Yang. Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni–Pt bimetallic surfaces: a density functional theory study. Molecular Catalysis, 2017, 434 : 206– 218
https://doi.org/10.1016/j.mcat.2017.03.015
22 M Zhang, K Yang, X Zhang, Y Yu. Effect of Ni(111) surface alloying by Pt on partial oxidation of methane to syngas: a DFT study. Surface Science, 2014, 630 : 236– 243
https://doi.org/10.1016/j.susc.2014.08.023
23 P Bothra, S K Pati. Improved catalytic activity of rhodium monolayer modified nickel (110) surface for the methane dehydrogenation reaction: a first-principles study. Nanoscale, 2014, 6( 12): 6738– 6744
https://doi.org/10.1039/C3NR06739D
24 Y Zhao, S Li, Y Sun. Theoretical study on the dissociative adsorption of CH4 on Pd-doped Ni surfaces. Chinese Journal of Catalysis, 2013, 34( 5): 911– 922
https://doi.org/10.1016/S1872-2067(12)60565-8
25 K Li, M Li, Y Wang, Z Wu. Theoretical study on the effect of Mn promoter for CO2 reforming of CH4 on the Ni(111) surface. Fuel, 2020, 274 : 117849
https://doi.org/10.1016/j.fuel.2020.117849
26 C Fan, Y A Zhu, Y Xu, Y Zhou, X G Zhou, D Chen. Origin of synergistic effect over Ni-based bimetallic surfaces: a density functional theory study. Journal of Chemical Physics, 2012, 137( 1): 014703
https://doi.org/10.1063/1.4731811
27 G Roy, A P Chattopadhyay. Dissociation of methane on Ni4 cluster—a DFT study. Computational & Theoretical Chemistry, 2017, 1106 : 7– 14
https://doi.org/10.1016/j.comptc.2017.02.030
28 B Jackson, S Nave. The dissociative chemisorption of methane on Ni(100): reaction path description of mode-selective chemistry. Journal of Chemical Physics, 2011, 135( 11): 114701
https://doi.org/10.1063/1.3634073
29 R C Cataphan, A A M Oliveira, Y Chen, D G Vlachos. DFT study of the water-gas shift reaction and coke formation on Ni(111) and Ni(211) surfaces. Journal of Physical Chemistry C, 2012, 116( 38): 20281– 20291
https://doi.org/10.1021/jp302488f
30 Z Wang, X M Cao, J Zhu, P Hu. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. Journal of Catalysis, 2014, 311 : 469– 480
https://doi.org/10.1016/j.jcat.2013.12.015
31 M C Payne, M P Teter, D C Allan, T A Arias, J D Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992, 64( 4): 1045– 1097
https://doi.org/10.1103/RevModPhys.64.1045
32 B Delley. Fast calculation of electrostatics in crystals and large molecules. Journal of Physical Chemistry, 1996, 100( 15): 6107– 6110
https://doi.org/10.1021/jp952713n
33 J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77( 18): 3865– 3868
https://doi.org/10.1103/PhysRevLett.77.3865
34 J Niu, J Ran, W Qi, Z Ou, W He. Identification of active sites in CO2 activation on MgO supported Ni cluster. International Journal of Hydrogen Energy, 2020, 45( 19): 11108– 11115
https://doi.org/10.1016/j.ijhydene.2020.02.066
35 H J Monkhorst, J D Pack. Special points for Brillouin-zone integrations. Physical Review. B, Solid State, 1976, 13( 12): 5188– 5192
https://doi.org/10.1103/PhysRevB.13.5188
36 T A Halgren, W N Lipscomb. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chemical Physics Letters, 1977, 49( 2): 225– 232
https://doi.org/10.1016/0009-2614(77)80574-5
37 J Niu, F Guo, J Ran, W Qi, Z Yang. Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: from experimental study and DFT calculations. International Journal of Hydrogen Energy, 2020, 45( 55): 30267– 30287
https://doi.org/10.1016/j.ijhydene.2020.08.067
38 C Pan, Z Guo, H Dai, R Ren, W Chu. Anti-sintering mesoporous Ni–Pd bimetallic catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy, 2020, 45( 32): 16133– 16143
https://doi.org/10.1016/j.ijhydene.2020.04.066
39 A Chaichi, S K Sadrnezhaad, M Malekjafarian. Synthesis and characterization of supportless Ni–Pd–CNT nanocatalyst for hydrogen production via steam reforming of methane. International Journal of Hydrogen Energy, 2018, 43( 3): 1319– 1336
https://doi.org/10.1016/j.ijhydene.2017.11.089
40 J Niu, Y Wang, S E Liland, S K Regli, J Yang, K R Rout, J Luo, M Rønning, J Ran, D Chen. Unraveling enhanced activity, selectivity, and coke-resistance of Pt–Ni bimetallic clusters in dry reforming. ACS Catalysis, 2021, 11( 4): 2398– 2411
https://doi.org/10.1021/acscatal.0c04429
41 Z Xie, B Yan, J H Lee, Q Wu, X Li, B Zhao, D Su, L Zhang, J G Chen. Effects of oxide supports on the CO2 reforming of ethane over Pt–Ni bimetallic catalysts. Applied Catalysis B: Environmental, 2019, 245 : 376– 388
https://doi.org/10.1016/j.apcatb.2018.12.070
42 Y Turap, I Wang, T Fu, Y Wu, Y Wang, W Wang. Co–Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2020, 45( 11): 6538– 6548
https://doi.org/10.1016/j.ijhydene.2019.12.223
43 H Qiu, J Ran, J Niu, F Guo, Z Ou. Effect of different doping ratios of Cu on the carbon formation and the elimination on Ni(111) surface: a DFT study. Molecular Catalysis, 2021, 502 : 111360
https://doi.org/10.1016/j.mcat.2020.111360
[1] FCE-21103-OF-NJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed