Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (4): 395-403   https://doi.org/10.1007/s11705-022-2218-3
  本期目录
Optimizing iodine capture performance by metal–organic framework containing with bipyridine units
Xinyi Yang1,2, Xiaolu Liu2, Yanfang Liu2, Xiao-Feng Wang1(), Zhongshan Chen2, Xiangke Wang2()
1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
2. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
 全文: PDF(11214 KB)   HTML
Abstract

Radioactive iodine exhibits medical values in radiology, but its excessive emissions can cause environmental pollution. Thus, the capture of radioiodine poses significant engineering for the environment and medical radiology. The adsorptive capture of radioactive iodine by metal–organic frameworks (MOFs) has risen to prominence. In this work, a Th-based MOF (denoted as Th-BPYDC) was structurally designed and synthesized, consisting of [Th63-O)43-OH)4(H2O)6]12+ clusters, abundant bipyridine units, and large cavities that allowed guest molecules diffusion and transmission. Th-BPYDC exhibited the uptake capacities of 2.23 g·g−1 and 312.18 mg·g−1 towards I2 vapor and I2 dissolved in cyclohexane, respectively, surpassing its corresponding analogue Th-UiO-67. The bipyridine units boosted the adsorption performance, and Th-BPYDC showed good reusability with high stability. Our work thus opened a new way for the synthesis of MOFs to capture radioactive iodine.

Key wordsmetal–organic framework    iodine    adsorption    nuclear waste    environmental remediation
收稿日期: 2022-04-24      出版日期: 2023-03-24
Corresponding Author(s): Xiao-Feng Wang,Xiangke Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(4): 395-403.
Xinyi Yang, Xiaolu Liu, Yanfang Liu, Xiao-Feng Wang, Zhongshan Chen, Xiangke Wang. Optimizing iodine capture performance by metal–organic framework containing with bipyridine units. Front. Chem. Sci. Eng., 2023, 17(4): 395-403.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2218-3
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I4/395
Fig.1  
Fig.2  
Fig.3  
Fig.4  
MaterialConditionsCapacity for I2 (mg·g?1)Temp.Adsorption strategyRef.
MIL-53 (Al)0.01 mol·L?1 solution I2 in cyclohexane9.7RTPhysisorption[45]
MIL-100 (Al)0.01 mol·L?1 solution I2 in cyclohexane63RTPhysisorption[45]
CAU-10.01 mol·L?1 solution I2 in cyclohexane290RTPore surface functionalization[45]
MIL-101-NH20.01 mol·L?1 solution I2 in cyclohexane311RTPore surface functionalization[45]
MIL-120 (Al)0.01 mol·L?1 solution I2 in cyclohexane155RTPore surface functionalization[45]
Tb(Cu4I4)(ina*)3 (DMF)0.69 mmol·L?1 solution I2 in cyclohexane226RTHalide-halide interaction[36]
Th-SINAP-7200 mg·L?1 solution I2 in cyclohexane107RTCharge transfer[29]
Th-SINAP-8200 mg·L?1 solution I2 in cyclohexane258RTCharge transfer[29]
Th-SINAP-10200 mg·L?1 solution I2 in cyclohexane292.4RTCharge transfer[28]
Th-SINAP-12200 mg·L?1 solution I2 in cyclohexane298.5RTCharge transfer[28]
Th-BPYDC200 mg·L?1 solution I2 in cyclohexane312.18RTCharge transferThis Work
Th-UiO-67200 mg·L?1 solution I2 in cyclohexane196.7RTCharge transferThis Work
Tab.1  
Fig.5  
1 A Adamantiades, I Kessides. Nuclear power for sustainable development: current status and future prospects. Energy Policy, 2009, 37(12): 5149–5166
https://doi.org/10.1016/j.enpol.2009.07.052
2 K Mayer, M Wallenius, K Lutzenkirchen, J Horta, A Nicholl, G Rasmussen, Belle P van, Z Varga, R Buda, N Erdmann, J V Kratz, N Trautmann, L K Fifield, S G Tims, M B Fröhlich, P Steier. Uranium from German nuclear power projects of the 1940s—a nuclear forensic investigation. Angewandte Chemie International Edition, 2015, 54(45): 13452–13456
https://doi.org/10.1002/anie.201504874
3 H Yang, X Liu, M Hao, Y Xie, X Wang, H Tian, G I N Waterhouse, P E Kruger, S G Telfer, S Ma. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621
https://doi.org/10.1002/adma.202106621
4 G Cheng, A Zhang, Z Zhao, Z Chai, B Hu, B Han, Y Ai, X Wang. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Science Bulletin, 2021, 66(19): 1994–2001
https://doi.org/10.1016/j.scib.2021.05.012
5 N Shen, Z Yang, S Liu, X Dai, C Xiao, K Taylor-Pashow, D Li, C Yang, J Li, Y Zhang, M Zhang, R Zhou, Z Chai, S Wang. 99TcO4− removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Communications, 2020, 11(1): 1–12
https://doi.org/10.1038/s41467-020-19374-9
6 J Li, L Chen, N Shen, R Xie, M Sheridan, X Chen, D Sheng, D Zhang, Z Chai, S Wang. Rational design of a cationic polymer network towards record high uptake of 99TcO4− in nuclear waste. Science China. Chemistry, 2021, 64(7): 1251–1260
https://doi.org/10.1007/s11426-020-9962-9
7 J Li, B Li, N Shen, L Chen, Q Guo, L Chen, L He, X Dai, Z Chai, S Wang. Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4– cleanup from alkaline nuclear waste. ACS Central Science, 2021, 7(8): 1441–1450
https://doi.org/10.1021/acscentsci.1c00847
8 J Zhang, L Chen, X Dai, L Chen, F Zhai, W Yu, S Guo, L Yang, L Chen, Y Zhang, L He, C Chen, Z Chai, S Wang. Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57(68): 8452–8455
https://doi.org/10.1039/D1CC02446A
9 M Hao, Z Chen, H Yang, G I N Waterhouse, S Ma, S Wang. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4–. Science Bulletin, 2022, 67(9): 924–932
https://doi.org/10.1016/j.scib.2022.02.012
10 L He, L Chen, X Dong, S Zhang, M Zhang, X Dai, X Liu, P Lin, K Li, C Chen, T Pan, F Ma, J Chen, M Yuan, Y Zhang, L Chen, R Zhou, Y Han, Z Chai, S Wang. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 2021, 7(3): 699–714
https://doi.org/10.1016/j.chempr.2020.11.024
11 N R Soelberg, T G Garn, M R Greenhalgh, J D Law, R Jubin, D M Strachan, P K Thallapally. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Science and Technology of Nuclear Installations, 2013, 2013: 1–12
https://doi.org/10.1155/2013/702496
12 D A Pryma, S J Mandel. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. Journal of Nuclear Medicine, 2014, 55(9): 1485–1491
https://doi.org/10.2967/jnumed.113.131508
13 X Liu, A Zhang, R Ma, B Wu, T Wen, Y Ai, M Sun, J Jin, S Wang, X Wang. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chemical Letters, 2022, 33(7): 3549–3555
https://doi.org/10.1016/j.cclet.2022.03.001
14 X Liu, H Pang, X Liu, Q Li, N Zhang, L Mao, M Qiu, B Hu, H Yang, X Wang. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation, 2021, 2(1): 100076
15 W Xie, D Cui, S R Zhang, Y H Xu, D L Jiang. Iodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 2019, 6(8): 1571–1595
https://doi.org/10.1039/C8MH01656A
16 J R Li, R J Kuppler, H C Zhou. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
https://doi.org/10.1039/b802426j
17 L J Murray, M Dincă, J R Long. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314
https://doi.org/10.1039/b802256a
18 D X Xue, Q Wang, J Bai. Amide-functionalized metal–organic frameworks: syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378: 2–16
https://doi.org/10.1016/j.ccr.2017.10.026
19 E A Dolgopolova, A M Rice, C R Martin, N B Shustova. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47(13): 4710–4728
https://doi.org/10.1039/C7CS00861A
20 C He, D Liu, W Lin. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chemical Reviews, 2015, 115(19): 11079–11108
https://doi.org/10.1021/acs.chemrev.5b00125
21 T Drake, P Ji, W Lin. Site isolation in metal–organic frameworks enable novel transition metal catalysis. Accounts of Chemical Research, 2018, 51(9): 2129–2138
https://doi.org/10.1021/acs.accounts.8b00297
22 M Hao, M Qiu, H Yang, B Hu, X Wang. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760: 143333
https://doi.org/10.1016/j.scitotenv.2020.143333
23 T Chen, K Yu, C Dong, X Yuan, X Gong, J Lian, X Cao, M Li, L Zhou, B Hu, R He, W Zhu, X Wang. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467: 214615
https://doi.org/10.1016/j.ccr.2022.214615
24 Y Cui, Y Yue, G Qian, B Chen. Luminescent functional metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1126–1162
https://doi.org/10.1021/cr200101d
25 S Yu, H Pang, S Huang, H Tang, S Wang, M Qiu, Z Chen, H Yang, G Song, D Fu, B Hu, X Wang. Recent advances in metal–organic frameworks membranes for water treatment: a review. Science of the Total Environment, 2021, 800: 149662
https://doi.org/10.1016/j.scitotenv.2021.149662
26 S Zhang, J Wang, Y Zhang, J Ma, L Huang, S Yu, L Chen, G Song, M Qiu, X Wang. Applications of water-stable metal–organic frameworks in the removal of water pollutants: a review. Environmental Pollution, 2021, 291: 118076
https://doi.org/10.1016/j.envpol.2021.118076
27 X Liu, Y Xie, M Hao, Z Chen, H Yang, G I N Waterhouse, S Ma, X K Wang. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science, 2022, 9(23): 2201735
https://doi.org/10.1002/advs.202201735
28 Z J Li, Y Ju, B Yu, X Wu, H Lu, Y Li, J Zhou, X Guo, Z H Zhang, J Lin, J Q Wang, S Wang. Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56(49): 6715–6718
https://doi.org/10.1039/D0CC02841J
29 Z J Li, Z Yue, Y Ju, X Wu, Y Ren, S Wang, Y Li, Z H Zhang, X Guo, J Lin, J Q Wang. Ultrastable thorium metal–organic frameworks for efficient iodine adsorption. Inorganic Chemistry, 2020, 59(7): 4435–4442
https://doi.org/10.1021/acs.inorgchem.9b03602
30 D F Sava, K W Chapman, M A Rodriguez, J A Greathouse, P S Crozier, H Zhao, P J Chupas, T M Nenoff. Competitive I2 sorption by Cu-BTC from humid gas streams. Chemistry of Materials, 2013, 25(13): 2591–2596
https://doi.org/10.1021/cm401762g
31 B Li, X Dong, H Wang, D Ma, K Tan, S Jensen, B J Deibert, J Butler, J Cure, Z Shi, T Thonhauser, Y J Chabal, Y Han, J Li. Capture of organic iodides from nuclear waste by metal–organic framework-based molecular traps. Nature Communications, 2017, 8(1): 1–9
https://doi.org/10.1038/s41467-017-00526-3
32 X Zhang, Silva I da, H G W Godfrey, S K Callear, S A Sapchenko, Y Cheng, I Vitorica-Yrezabal, M D Frogley, G Cinque, C C Tang, C Giacobbe, C Dejoie, S Rudić, A J Ramirez-Cuesta, M A Denecke, S Yang, M Schröder. Confinement of iodine molecules into triple-helical chains within robust metal–organic frameworks. Journal of the American Chemical Society, 2017, 139(45): 16289–16296
https://doi.org/10.1021/jacs.7b08748
33 B Valizadeh, T N Nguyen, B Smit, K C Stylianou. Porous metal–organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Advanced Functional Materials, 2018, 28(30): 1801596
https://doi.org/10.1002/adfm.201801596
34 D Banerjee, X Chen, S S Lobanov, A M Plonka, X Chan, J A Daly, T Kim, P K Thallapally, J B Parise. Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Applied Materials & Interfaces, 2018, 10(13): 10622–10626
https://doi.org/10.1021/acsami.8b02651
35 M Leloire, C Walshe, P Devaux, R Giovine, S Duval, T Bousquet, S Chibani, J F Paul, A Moissette, H Vezin, P Nerisson, L Cantrel, C Volkringer, T Loiseau. Capture of gaseous iodine in isoreticular zirconium-based UiO-n metal–organic frameworks: influence of amino functionalization, DFT calculations, Raman and EPR spectroscopic investigation. Chemistry, 2022, 28(14): e202104437
https://doi.org/10.1002/chem.202104437
36 Y Q Hu, M Q Li, Y Wang, T Zhang, P Q Liao, Z Zheng, X M Chen, Y Z Zheng. Direct observation of confined I−···I2···I− interactions in a metal-organic framework: iodine capture and sensing. Chemistry, 2017, 23(35): 8409–8413
https://doi.org/10.1002/chem.201702087
37 L Wang, T Li, X Dong, M Pang, S Xiao, W Zhang. Thiophene-based MOFs for iodine capture: effect of pore structures and interaction mechanism. Chemical Engineering Journal, 2021, 425: 130578
https://doi.org/10.1016/j.cej.2021.130578
38 Y Ju, Z J Li, H Lu, Z Zhou, Y Li, X L Wu, X Guo, Y Qian, Z H Zhang, J Lin, J Q Wang, M Y He. Interpenetration control in thorium metal–organic frameworks: structural complexity toward iodine adsorption. Inorganic Chemistry, 2021, 60(8): 5617–5626
https://doi.org/10.1021/acs.inorgchem.0c03586
39 A S Munn, F Millange, M Frigoli, N Guillou, C Falaise, V Stevenson, C Volkringer, T Loiseau, G Cibin, R I Walton. Iodine sequestration by thiol-modified MIL-53 (Al). CrystEngComm, 2016, 18(41): 8108–8114
https://doi.org/10.1039/C6CE01842D
40 G Mehlana, G Ramon, S A Bourne. A 4-fold interpenetrated diamondoid metal–organic framework with large channels exhibiting solvent sorption properties and high iodine capture. Microporous and Mesoporous Materials, 2016, 231: 21–30
https://doi.org/10.1016/j.micromeso.2016.05.016
41 M W Jia, J T Li, S T Che, L Kan, G H Li, Y L Liu. Two CuxIy-based copper-organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I2 sorption and release. Inorganic Chemistry Frontiers, 2019, 6(5): 1261–1266
https://doi.org/10.1039/C9QI00233B
42 T Xu, J T Li, M W Jia, G H Li, Y L Liu. Contiguous layer-based metal–organic framework with conjugated π-electron ligand for high iodine capture. Dalton Transactions, 2021, 50(37): 13096–13102
https://doi.org/10.1039/D1DT00947H
43 D Luo, Y He, J Tian, J L Sessler, X D Chi. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. Journal of the American Chemical Society, 2022, 144(1): 113–117
https://doi.org/10.1021/jacs.1c11731
44 M HaoX LiuX LiuJ ZhangH YangG I N WaterhouseX WangS Ma. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry, 2022, 4: 2294–2307
45 C Falaise, C Volkringer, J Facqueur, T Bousquet, L Gasnot, T Loiseau. Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chemical Communications, 2013, 49(87): 10320–10322
https://doi.org/10.1039/c3cc43728k
[1] FCE-22046-OF-YX_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed