Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (5): 516-524   https://doi.org/10.1007/s11705-022-2238-z
  本期目录
Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer
Yili Liu1, Guoliang Che1, Weizhong Cui1, Beili Pang1(), Qiong Sun1, Liyan Yu1(), Lifeng Dong1,2()
1. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2. Department of Physics, Hamline University, St. Paul, MN 55104, USA
 全文: PDF(3711 KB)   HTML
Abstract

All-inorganic cesium lead bromide (CsPbBr3) perovskite solar cells have been attracting growing interest due to superior performance stability and low cost. However, low light absorbance and large charge recombination at TiO2/CsPbBr3 interface or within CsPbBr3 film still prevent further performance improvement. Herein, we report devices with high power conversion efficiency (9.16%) by introducing graphene oxide quantum dots (GOQDs) between TiO2 and perovskite layers. The recombination of interfacial radiation can be effectively restrained due to enhanced charge transfer capability. GOQDs with C-rich active sites can involve in crystallization and fill within the CsPbBr3 perovskite film as functional semiconductor additives. This work provides a promising strategy to optimize the crystallization process and boost charge extraction at the surface/interface optoelectronic properties of perovskites for high efficient and low-cost solar cells.

Key wordsall inorganic    perovskite solar cells    graphene oxide quantum dots    high performance    stability
收稿日期: 2022-06-09      出版日期: 2023-04-28
Corresponding Author(s): Beili Pang,Liyan Yu,Lifeng Dong   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(5): 516-524.
Yili Liu, Guoliang Che, Weizhong Cui, Beili Pang, Qiong Sun, Liyan Yu, Lifeng Dong. Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer. Front. Chem. Sci. Eng., 2023, 17(5): 516-524.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2238-z
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I5/516
  
Fig.1  
PSC deviceJsc/(mA?cm–2)Voc/VFF/%PCE/%
Pristine PSC6.231.2669.25.43
PSC with GOQDs8.541.3877.69.16
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 H Min, M Kim, S U Lee, H Kim, I S Sang. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366(6466): 749–753
https://doi.org/10.1126/science.aay7044
2 Y Y Cai, Z B Zhang, Y Zhou, H Liu, Q Q Qin, X B Lu, X S Gao, L L Shui, S J Wu, J M Liu. Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers. Electrochimica Acta, 2018, 261: 445–453
https://doi.org/10.1016/j.electacta.2017.12.135
3 C T Zhu, Y Yang, F Y Lin, Y Luo, S P Ma, L Zhu, X Y Guo. Electrodeposited transparent PEDOT for inverted perovskite solar cells: improved charge transport and catalytic performances. Rare Metals, 2021, 40(9): 2402–2414
https://doi.org/10.1007/s12598-020-01641-9
4 Y Q Wang, L Yang, D A Chunxiang, C Gang, J L Ai, X F Wang. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells. Frontiers of Chemical Science and Engineering, 2021, 15(1): 180–186
https://doi.org/10.1007/s11705-020-1917-x
5 Y R Xia, C Zhao, P Y Zhao, L Y Mao, Y C Ding, D C Hong, Y X Tian, X S Yan, Z Jin. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells. Journal of Power Sources, 2021, 494(15): 229781
https://doi.org/10.1016/j.jpowsour.2021.229781
6 I Deretzis, E Smecca, G Mannino, A La Magna, T Miyasaka, A Alberti. Stability and degradation in hybrid perovskites: is the glass half-empty or half-full?. Journal of Physical Chemistry Letters, 2018, 9(11): 3000–3007
https://doi.org/10.1021/acs.jpclett.8b00120
7 W S Yang, B W Park, E H Jung, N J Jeon, Y C Kim, D U Lee, S S Shin, J Seo, E K Kim, J H Noh, S I Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
https://doi.org/10.1126/science.aan2301
8 J Liang, C Wang, Y Wang, Z Xu, Z Lu, Y Ma, H Zhu, Y Hu, C Xiao, X Yi, G Zhu, H Lv, L Ma, T Chen, Z Tie, Z Jin, J Liu. All-inorganic perovskite solar cells. Journal of the American Chemical Society, 2016, 138(49): 15829–15832
https://doi.org/10.1021/jacs.6b10227
9 M Kulbak, S Gupta, N Kedem, I Levine, T Bendikov, G Hodes, D Cahen. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167–172
https://doi.org/10.1021/acs.jpclett.5b02597
10 M Kulbak, D Cahen, G Hodes. How important is the organic part of lead halide perovskite photovoltaic cells efficient CsPbBr3 cells?. Journal of Physical Chemistry Letters, 2015, 6(13): 2452–2456
https://doi.org/10.1021/acs.jpclett.5b00968
11 J Liang, G Y Zhu, C X Wang, P Y Zhao, Y R Wang, Y Hu, L B Ma, Z X Tie, J Liu, Z Jin. An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy, 2018, 52: 239–245
https://doi.org/10.1016/j.nanoen.2018.07.060
12 J Liang, J Liu, Z Jin. All-inorganic halide perovskites for optoelectronics: progress and prospects. Solar RRL, 2017, 1(10): 1700086
https://doi.org/10.1002/solr.201700086
13 J Liang, C X Wang, P Y Zhao, Z P Lu, Y Ma, Z R Xu, Y R Wang, H F Zhu, Y Hu, G Y Zhu, L Ma, T Chen, Z Tie, J Liu, Z Jin. Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale, 2017, 9(33): 11841–11845
https://doi.org/10.1039/C7NR03530F
14 C Y Chen, H Y Lin, K M Chiang, W L Tsai, Y C Huang, C S Tsao, H W Lin. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Advanced Materials, 2017, 29(12): 1605290
https://doi.org/10.1002/adma.201605290
15 Y G Rong, L F Liu, A Y Mei, X Li, H W Han. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066
https://doi.org/10.1002/aenm.201501066
16 J Liang, P Zhao, C Wang, Y Wang, Y Hu, G Zhu, L Ma, J Liu, Z Jin. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. Journal of the American Chemical Society, 2017, 139(40): 14009–14012
https://doi.org/10.1021/jacs.7b07949
17 L Zhang, X Z Zhang, X X Xu, J Tang, J H Wu, Z Lan. CH3NH3Br additive for enhanced photovoltaic performance and air stability of planar perovskite solar cells prepared by two-step dipping method. Energy Technology, 2017, 5(10): 1887–1894
https://doi.org/10.1002/ente.201700561
18 Y Li, J Duan, H Yuan, Y Zhao, B He, Q Tang. Lattice modulation of alkali metal cations doped Cs1−xRxPbBr3 halides for inorganic perovskite solar cells. Solar RRL, 2018, 2(10): 1800164
https://doi.org/10.1002/solr.201800164
19 T Niu, J Lu, R Munir, J Li, D Barrit, X Zhang, H Hu, Z Yang, A Amassian, K Zhao, S F Liu. Stable high-performance perovskite solar cells via grain boundary passivation. Advanced Materials, 2018, 30(16): 1706576
https://doi.org/10.1002/adma.201706576
20 F Bu, B L He, Y Ding, X K Li, X M Sun, J L Duan, Y Y Zhao, H Y Chen, Q W Tang. Enhanced energy level alignment and hole extraction of carbon electrode for air-stable hole-transporting material-free CsPbBr3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 205: 110267
https://doi.org/10.1016/j.solmat.2019.110267
21 Ç Kırbıyık, A Toprak, C Başlak, M Kuş, M Ersöz. Nitrogen-doped CQDs to enhance the power conversion efficiency of perovskite solar cells via surface passivation. Journal of Alloys and Compounds, 2020, 832: 154897
https://doi.org/10.1016/j.jallcom.2020.154897
22 H W Yuan, Y Y Zhao, J L Duan, B L He, Z B Jiao, Q W Tang. Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells. Electrochimica Acta, 2018, 279: 84–90
https://doi.org/10.1016/j.electacta.2018.05.087
23 B L Pang, L F Dong, S Ma, H Z Dong, L Y Yu. Performance of FTO-free conductive graphene-based counter electrodes for dye-sensitized solar cells. RSC Advances, 2016, 6(47): 41287–41293
https://doi.org/10.1039/C6RA02854C
24 Y Y Wang, X C Bao, B L Pang, Q Q Zhu, J Y Wang, D Q Zhu, L Y Yu, R Q Yang, L F Dong. Solution-processed functionalized reduced graphene oxide—an efficient stable electron buffer layer for high-performance solar cells. Carbon, 2018, 131: 31–37
https://doi.org/10.1016/j.carbon.2018.01.090
25 L Najafi, B Taheri, B Martin-Garcia, S Bellani, D Di Girolamo, A Agresti, R Oropesa-Nunez, S Pescetelli, L Vesce, E Calabro, M Prato, A E Del Rio Castillo, A Di Carlo, F Bonaccorso. MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%. ACS Nano, 2018, 12(11): 10736–10754
https://doi.org/10.1021/acsnano.8b05514
26 J Duan, Y Zhao, B He, Q Tang. Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber. Small, 2018, 14(20): 1704443
https://doi.org/10.1002/smll.201704443
27 S J Xu, D Li, P Y Wu. One-pot, facile, and versatile synthesis of monolayer MosS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2015, 25(7): 1127–1136
https://doi.org/10.1002/adfm.201403863
28 C M Cardona, W Li, A E Kaifer, D Stockdale, G C Bazan. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Advanced Materials, 2011, 23(20): 2367–2371
https://doi.org/10.1002/adma.201004554
29 Y Li, Y Hu, Y Zhao, G Shi, L Deng, Y Hou, L Qu. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Advanced Materials, 2011, 23(6): 776–780
https://doi.org/10.1002/adma.201003819
30 Z Zhu, J Ma, Z Wang, C Mu, Z Fan, L Du, Y Bai, L Fan, H Yan, D L Phillips, S Yang. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. Journal of the American Chemical Society, 2014, 136(10): 3760–3763
https://doi.org/10.1021/ja4132246
31 M Moriya, D Hirotani, T Ohta, Y Ogomi, Q Shen, T S Ripolles, K Yoshino, T Toyoda, T Minemoto, S Hayase. Architecture of the interface between the perovskite and hole-transport layers in perovskite solar cells. ChemSusChem, 2016, 9(18): 2643
https://doi.org/10.1002/cssc.201600848
32 Y Yang, H R Peng, C Liu, Z Arain, Y Ding, S Ma, X L Liu, T Hayat, A Alsaedi, S Dai. Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(11): 6450–6458
https://doi.org/10.1039/C8TA11925B
33 J Duan, Y Zhao, B He, Q Tang. High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angewandte Chemie International Edition, 2018, 57(14): 3787–3791
https://doi.org/10.1002/anie.201800019
34 Y Zhao, H Tan, H Yuan, Z Yang, J Z Fan, J Kim, O Voznyy, X Gong, L N Quan, C S Tan, J Hofkens, D Yu, Q Zhao, E H Sargent. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 2018, 9(1): 1607
https://doi.org/10.1038/s41467-018-04029-7
35 J Chang, H Zhu, B Li, F H Isikgor, Y Hao, Q Xu, J Ouyang. Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(3): 887–893
https://doi.org/10.1039/C5TA08398B
36 X H Mu, X G Yu, D K Xu, X L Shen, Z H Xia, H He, H Y Zhu, J S Xie, B Q Sun, D R Yang. High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer. Nano Energy, 2015, 16: 54–61
https://doi.org/10.1016/j.nanoen.2015.06.015
37 X Y Liu, X H Tan, Z Y Liu, B Sun, J J Li, S Xi, T L Shi, G G Liao. Sequentially vacuum evaporated high-quality CsPbBr3 films for efficient carbon-based planar heterojunction perovskite solar cells. Journal of Power Sources, 2019, 443: 227269
https://doi.org/10.1016/j.jpowsour.2019.227269
38 K Bouzidi, M Chegaar, A Bouhemadou. Solar cells parameters evaluation considering the series and shunt resistance. Solar Energy Materials and Solar Cells, 2007, 91(18): 1647–1651
https://doi.org/10.1016/j.solmat.2007.05.019
39 G Q Tong, T T Chen, H Li, L B Qiu, Z H Liu, Y Y Dang, W T Song, K O Luis, Y Jiang, Y B Qi. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy, 2019, 65: 104015
https://doi.org/10.1016/j.nanoen.2019.104015
[1] FCE-22065-OF-LY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed