Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (3): 347-357   https://doi.org/10.1007/s11705-022-2246-z
  本期目录
Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation
Quan Liu1,2, Xian Wang1, Yanan Guo2(), Gongping Liu2(), Kai-Ge Zhou3
1. School of Chemical Engineering, Analytical and Testing Center, Anhui University of Science and Technology, Huainan 232001, China
2. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
3. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
 全文: PDF(7895 KB)   HTML
Abstract

Reverse-selective membranes have attracted considerable interest for bioethanol production. However, to date, the reverse-separation performance of ethanol/water is poor and the separation mechanism is unclear. Graphene-based membranes with tunable apertures and functional groups have shown substantial potential for use in molecular separation. Using molecular dynamics simulations, for the first time, we reveal two-way selectivity in ethanol/water separation through functional graphene membranes. Pristine graphene (PG) exhibits reverse-selective behavior with higher ethanol fluxes than water, resulting from the preferential adsorption for ethanol. Color flow mappings show that this ethanol-permselective process is initiated by the presence of ethanol-enriched and water-barren pores; this has not been reported in previous studies. In contrast, water molecules are preferred for hydroxylated graphene membranes because of the synergistic effects of molecular sieving and functional-group attraction. A simulation of the operando condition shows that the PG membrane with an aperture size of 3.8 Å achieves good separation performance, with an ethanol/water separation factor of 34 and a flux value of 69.3 kg∙m‒2∙h‒1∙bar‒1. This study provides new insights into the reverse-selective mechanism of porous graphene membranes and a new avenue for efficient biofuel production.

Key wordsreverse separation    graphene membrane    ethanol/water separation    molecular simulation
收稿日期: 2022-07-13      出版日期: 2023-03-17
Corresponding Author(s): Yanan Guo,Gongping Liu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(3): 347-357.
Quan Liu, Xian Wang, Yanan Guo, Gongping Liu, Kai-Ge Zhou. Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation. Front. Chem. Sci. Eng., 2023, 17(3): 347-357.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2246-z
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I3/347
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 T C Merkel, B D Freeman, R J Spontak, Z He, I Pinnau, P Meakin, A J Hill. Ultrapermeable, reverse-selective nanocomposite membranes. Science, 2002, 296(5567): 519–522
https://doi.org/10.1126/science.1069580
2 A Khakpay, P Scovazzo. Reverse-selective behavior of room temperature ionic liquid based membranes for natural gas processing. Journal of Membrane Science, 2018, 545: 204–212
https://doi.org/10.1016/j.memsci.2017.09.068
3 S Yu, B Qin, F Yang, M Xie, L Xue, Z Zhao, K Wang. Unlocking the limits of diffusion and adsorption of metal-crosslinked reduced graphene oxide membranes for gas separation. Applied Surface Science, 2022, 586: 152868
https://doi.org/10.1016/j.apsusc.2022.152868
4 C H Lau, P Li, F Li, T S Chung, D R Paul. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38(5): 740–766
https://doi.org/10.1016/j.progpolymsci.2012.09.006
5 H Mushardt, V Kramer, D Hülagü, T Brinkmann, M Kraume. Development of solubility selective mixed matrix membranes for gas separation. Chemie ingenieur technik, 2014, 86(1–2): 83–91
https://doi.org/10.1002/cite.201300074
6 I Ahmed, N F C Pa, M G M Nawawi, W A W A Rahman. Modified polydimethylsiloxane/polystyrene blended IPN pervaporation membrane for ethanol/water separation. Journal of Applied Polymer Science, 2011, 122(4): 2666–2679
https://doi.org/10.1002/app.34319
7 X Q Cheng, K Konstas, C M Doherty, C D Wood, X Mulet, Z Xie, D Ng, M R Hill, C H Lau, L Shao. Organic microporous nanofillers with unique alcohol affinity for superior ethanol recovery toward sustainable biofuels. ChemSusChem, 2017, 10(9): 1887–1891
https://doi.org/10.1002/cssc.201700362
8 H Sanaeepur, A Ebadi Amooghin, S Bandehali, A Moghadassi, T Matsuura, B van der Bruggen. Polyimides in membrane gas separation: monomer’s molecular design and structural engineering. Progress in Polymer Science, 2019, 91: 80–125
https://doi.org/10.1016/j.progpolymsci.2019.02.001
9 Y Li, T S Chung, C Cao, S Kulprathipanja. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite a mixed matrix membranes. Journal of Membrane Science, 2005, 260(1): 45–55
https://doi.org/10.1016/j.memsci.2005.03.019
10 H Mao, H G Zhen, A Ahmad, A S Zhang, Z P Zhao. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. Journal of Membrane Science, 2019, 573: 344–358
https://doi.org/10.1016/j.memsci.2018.12.017
11 Y Pan, T Zhu, Q Xia, X Yu, Y Wang. Constructing superhydrophobic ZIF-8 layer with bud-like surface morphology on PDMS composite membrane for highly efficient ethanol/water separation. Journal of Environmental Chemical Engineering, 2021, 9(1): 104977
https://doi.org/10.1016/j.jece.2020.104977
12 Y Pan, X Yu. Preparation of zeolitic imidazolate framework-91 and its modeling for pervaporation separation of water/ethanol mixtures. Separation and Purification Technology, 2020, 237: 116330
https://doi.org/10.1016/j.seppur.2019.116330
13 X He, T Wang, J Huang, J Chen, J Li. Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation. Separation and Purification Technology, 2020, 241: 116675
https://doi.org/10.1016/j.seppur.2020.116675
14 T Zhu, S Xu, F Yu, X Yu, Y Wang. ZIF-8@GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery. Journal of Membrane Science, 2020, 598: 117681
https://doi.org/10.1016/j.memsci.2019.117681
15 T Zhu, X Yu, M Yi, Y Wang. Facile covalent crosslinking of zeolitic imidazolate framework/polydimethylsiloxane mixed matrix membrane for enhanced ethanol/water separation performance. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12664–12676
https://doi.org/10.1021/acssuschemeng.0c04584
16 J Kang, Y Choi, J P Kim, J H Kim, J Y Kim, O Kwon, D I Kim, D W Kim. Thermally-induced pore size tuning of multilayer nanoporous graphene for organic solvent nanofiltration. Journal of Membrane Science, 2021, 637: 119620
https://doi.org/10.1016/j.memsci.2021.119620
17 Y Liu, Z Bai, G Lin, L Wang, X Xu, L He, X Liu. Covalent cross-linking mediated TA-APTES NPs to construct a high-efficiency GO composite membrane for dye/salt separation. Applied Surface Science, 2022, 584: 152595
https://doi.org/10.1016/j.apsusc.2022.152595
18 G Liu, W Jin, N Xu. Graphene-based membranes. Chemical Society Reviews, 2015, 44(15): 5016–5030
https://doi.org/10.1039/C4CS00423J
19 C Moreno, M Vilas-Varela, B Kretz, A Garcia-Lekue, M V Costache, M Paradinas, M Panighel, G Ceballos, S O Valenzuela, D Peña, A Mugarza. Bottom-up synthesis of multifunctional nanoporous graphene. Science, 2018, 360(6385): 199–203
https://doi.org/10.1126/science.aar2009
20 J Jang, Y T Nam, D Kim, Y J Kim, D W Kim, H T Jung. Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(17): 8292–8299
https://doi.org/10.1039/D0TA00804D
21 S Gravelle, H Yoshida, L Joly, C Ybert, L Bocquet. Carbon membranes for efficient water−ethanol separation. Journal of Chemical Physics, 2016, 145(12): 124708
https://doi.org/10.1063/1.4963098
22 A Kommu, J K Singh. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: a molecular dynamics study. Journal of Physical Chemistry C, 2017, 121(14): 7867–7880
https://doi.org/10.1021/acs.jpcc.7b00172
23 Q Liu, M Chen, Y Mao, G Liu. Theoretical study on Janus graphene oxide membrane for water transport. Frontiers of Chemical Science and Engineering, 2021, 15(4): 913–921
https://doi.org/10.1007/s11705-020-1954-5
24 Q Liu, K M Gupta, Q Xu, G Liu, W Jin. Gas permeation through double-layer graphene oxide membranes: the role of interlayer distance and pore offset. Separation and Purification Technology, 2019, 209: 419–425
https://doi.org/10.1016/j.seppur.2018.07.044
25 Q Liu, Y Wu, X Wang, G Liu, Y Zhu, Y Tu, X Lu, W Jin. Molecular dynamics simulation of water−ethanol separation through monolayer graphene oxide membranes: significant role of O/C ratio and pore size. Separation and Purification Technology, 2019, 224: 219–226
https://doi.org/10.1016/j.seppur.2019.05.030
26 D Cohen-Tanugi, J C Grossman. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
https://doi.org/10.1021/nl3012853
27 H Li, W Lv, J Xu, J Hu, H Liu. Can flexible framework fillers keep breathing in mixed matrix membranes to enhance separation performance?. Journal of Membrane Science, 2020, 614: 118426
https://doi.org/10.1016/j.memsci.2020.118426
28 K M Gupta, J Liu, J Jiang. A molecular simulation protocol for membrane pervaporation. Journal of Membrane Science, 2019, 572: 676–682
https://doi.org/10.1016/j.memsci.2018.11.052
29 Q Liu, H Zhu, G Liu, W Jin. Efficient separation of (C1–C2) alcohol solutions by graphyne membranes: a molecular simulation study. Journal of Membrane Science, 2022, 644: 120139
https://doi.org/10.1016/j.memsci.2021.120139
30 W L Jorgensen, J Chandrasekhar, J D Madura, R W Impey, M L Klein. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 1983, 79(2): 926–935
https://doi.org/10.1063/1.445869
31 W L Jorgensen, D S Maxwell, J Tirado-Rives. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996, 118(45): 11225–11236
https://doi.org/10.1021/ja9621760
32 C L Wennberg, T Murtola, S Páll, M J Abraham, B Hess, E Lindahl. Direct-space corrections enable fast and accurate Lorentz–Berthelot combination rule Lennard–Jones lattice summation. Journal of Chemical Theory and Computation, 2015, 11(12): 5737–5746
https://doi.org/10.1021/acs.jctc.5b00726
33 D van der Spoel, E Lindahl, B Hess, G Groenhof, A E Mark, H J Berendsen. GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 2005, 26(16): 1701–1718
https://doi.org/10.1002/jcc.20291
34 W Humphrey, A Dalke, K Schulten. VMD: visual molecular dynamics. Journal of Molecular Graphics, 1996, 14(1): 33–38
https://doi.org/10.1016/0263-7855(96)00018-5
35 W Wei, J Liu, J Jiang. Atomistic simulation study of polyarylate/zeolitic-imidazolate framework mixed-matrix membranes for water desalination. ACS Applied Nano Materials, 2020, 3(10): 10022–10031
https://doi.org/10.1021/acsanm.0c02004
36 D Cohen-Tanugi, J C Grossman. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. Journal of Chemical Physics, 2014, 141(7): 074704
https://doi.org/10.1063/1.4892638
37 J Liu, W Wei, J Jiang. A highly rigid and conjugated microporous polymer membrane for solvent permeation and biofuel purification: a molecular simulation study. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2892–2900
https://doi.org/10.1021/acssuschemeng.9b07207
38 Y Guo, W Xie, H Li, J Li, J Hu, H Liu. Construction of hydrophobic channels on Cu(I)-MOF surface to improve selective adsorption desulfurization performance in presence of water. Separation and Purification Technology, 2022, 285: 120287
https://doi.org/10.1016/j.seppur.2021.120287
39 S An, C Lu, Q Xu, C Lian, C Peng, J Hu, X Zhuang, H Liu. Constructing catalytic crown ether-based covalent organic frameworks for electroreduction of CO2. ACS Energy Letters, 2021, 6(10): 3496–3502
https://doi.org/10.1021/acsenergylett.1c01681
40 D Cohen-Tanugi, L C Lin, J C Grossman. Multilayer nanoporous graphene membranes for water desalination. Nano Letters, 2016, 16(2): 1027–1033
https://doi.org/10.1021/acs.nanolett.5b04089
41 L Zhang, G Wu, J Jiang. Adsorption and diffusion of CO2 and CH4 in zeolitic imidazolate framework-8: effect of structural flexibility. Journal of Physical Chemistry C, 2014, 118(17): 8788–8794
https://doi.org/10.1021/jp500796e
42 K Nakagawa, S Araya, K Ushio, M Kunimatsu, T Yoshioka, T Shintani, E Kamio, K L Tung, H Matsuyama. Controlling interlayer spacing and organic solvent permeation in laminar graphene oxide membranes modified with crosslinker. Separation and Purification Technology, 2021, 276: 119279
https://doi.org/10.1016/j.seppur.2021.119279
43 J Wang, P Zhang, B Liang, Y Liu, T Xu, L Wang, B Cao, K Pan. Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Applied Materials & Interfaces, 2016, 8(9): 6211–6218
https://doi.org/10.1021/acsami.5b12723
[1] FCE-22071-OF-LQ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed