Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (8): 1096-1108   https://doi.org/10.1007/s11705-023-2317-9
  本期目录
Sustainable conversion regenerated cellulose into cellulose oleate by sonochemistry
De-Fa Hou1,2, Pan-Pan Yuan1, Zi-Wei Feng2, Meng An1, Pei-Yao Li2, Can Liu1, Ming-Bo Yang2()
1. National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resource, Southwest Forestry University, Kunming 650224, China
2. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
 全文: PDF(5214 KB)   HTML
Abstract

Derivatization has great potential for the high-value utilization of cellulose by enhancing its processability and functionality. However, due to the low reactivity of natural cellulose, it remains challenging to rapidly prepare cellulose derivatives with high degrees of substitution. The “cavitation effect” of ultrasound can reduce the particle size and crystalline index of cellulose, which provides a possible method for preparing cellulose derivatives. Herein, a feasible method was proposed for efficiently converting regenerated cellulose to cellulose oleate with the assistance of ultrasonic treatment. By adjusting the reaction conditions including ultrasonic intensity, feeding ratios of oleic acid, reaction time, and reaction solvent, a series of cellulose oleates with degrees of substitution ranging from 0.37 to 1.71 were synthesized. Additionally, the effects of different reaction conditions on the chemical structures, crystalline structures, and thermal behaviors were investigated thoroughly. Cellulose oleates with degrees of substitution exceeding 1.23 exhibited amorphous structures and thermoplasticity with glass transition temperatures at 159.8 to 172.6 °C. This study presented a sustainable and practicable method for effectively derivatizing cellulose.

Key wordsregenerated cellulose    cellulose oleate    sonochemistry    degree of substitution    thermoplasticity
收稿日期: 2022-11-26      出版日期: 2023-07-20
Corresponding Author(s): Ming-Bo Yang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(8): 1096-1108.
De-Fa Hou, Pan-Pan Yuan, Zi-Wei Feng, Meng An, Pei-Yao Li, Can Liu, Ming-Bo Yang. Sustainable conversion regenerated cellulose into cellulose oleate by sonochemistry. Front. Chem. Sci. Eng., 2023, 17(8): 1096-1108.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2317-9
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I8/1096
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 H Nadeem, M Athar, M Dehghani, G Garnier, W Batchelor. Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications. Science of the Total Environment, 2022, 836: 155654
https://doi.org/10.1016/j.scitotenv.2022.155654
2 S Janaswamy, M P Yadav, M Hoque, S Bhattarai, S Ahmed. Cellulosic fraction from agricultural biomass as a viable alternative for plastics and plastic products. Industrial Crops and Products, 2022, 179: 114692
https://doi.org/10.1016/j.indcrop.2022.114692
3 T Li, C Chen, A H Brozena, J Y Zhu, L Xu, C Driemeier, J Dai, O J Rojas, A Isogai, L Wågberg, L Hu. Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590(7844): 47–56
https://doi.org/10.1038/s41586-020-03167-7
4 H Tu, M Zhu, B Duan, L Zhang. Recent progress in high-strength and robust regenerated cellulose materials. Advanced Materials, 2021, 33(28): 2000682
https://doi.org/10.1002/adma.202000682
5 Z Xia, J Li, J Zhang, X Zhang, X Zheng, J Zhang. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. Journal of Bioresources and Bioproducts, 2020, 5(2): 79–95
https://doi.org/10.1016/j.jobab.2020.04.001
6 Y Lu, Y Wu. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method. Frontiers of Chemical Engineering in China, 2008, 2(2): 204–208
https://doi.org/10.1007/s11705-008-0027-y
7 A Dufresne. Cellulose nanomaterial reinforced polymer nanocomposites. Current Opinion in Colloid & Interface Science, 2017, 29: 1–8
https://doi.org/10.1016/j.cocis.2017.01.004
8 B Wu, B Geng, Y Chen, H Liu, G Li, Q Wu. Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films. Frontiers of Chemical Science and Engineering, 2017, 11(4): 554–563
https://doi.org/10.1007/s11705-017-1673-8
9 X Zhang, Y Cheng, J You, J Zhang, C Yin, J Zhang. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nature Communications, 2022, 13(1): 1117
https://doi.org/10.1038/s41467-022-28759-x
10 N Wang, E Ding, R Cheng. Surface modification of cellulose nanocrystals. Frontiers of Chemical Engineering in China, 2007, 1(3): 228–232
https://doi.org/10.1007/s11705-007-0041-5
11 P Yao, H Gong, Z Y Wu, H Fu, B Li, B Zhu, J Ji, X Wang, N Xu, C Tang, H Zhang, J Zhu. Greener and higher conversion of esterification via interfacial photothermal catalysis. Nature Sustainability, 2022, 5(4): 348–356
https://doi.org/10.1038/s41893-021-00841-0
12 K J Edgar, C M Buchanan, J S Debenham, P A Rundquist, B D Seiler, M C Shelton, D Tindall. Advances in cellulose ester performance and application. Progress in Polymer Science, 2001, 26(9): 1605–1688
https://doi.org/10.1016/S0079-6700(01)00027-2
13 H C Arca, L I Mosquera-Giraldo, V Bi, D Xu, L S Taylor, K J Edgar. Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules, 2018, 19(7): 2351–2376
https://doi.org/10.1021/acs.biomac.8b00517
14 O A El SeoudT Heinze. Organic esters of cellulose: new perspectives for old polymers. In: Heinze T, ed. Polysaccharides I: Structure, Characterization and Use. Berlin: Springer, 2005, 103–149
15 R Jia, W Tian, H Bai, J Zhang, S Wang, J Zhang. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nature Communications, 2019, 10(1): 795
https://doi.org/10.1038/s41467-019-08675-3
16 E Esen, P Hädinger, M A R Meier. Sustainable fatty acid modification of cellulose in a CO2-based switchable solvent and subsequent thiol-ene modification. Biomacromolecules, 2021, 22(2): 586–593
https://doi.org/10.1021/acs.biomac.0c01444
17 A Bendaoud, Y Chalamet. Plasticizing effect of ionic liquid on cellulose acetate obtained by melt processing. Carbohydrate Polymers, 2014, 108: 75–82
https://doi.org/10.1016/j.carbpol.2014.03.023
18 G Zhang, K Huang, X Jiang, D Huang, Y Yang. Acetylation of rice straw for thermoplastic applications. Carbohydrate Polymers, 2013, 96(1): 218–226
https://doi.org/10.1016/j.carbpol.2013.03.069
19 L Duchatel-Crépy, N Joly, P Martin, A Marin, J F Tahon, J M Lefebvre, V Gaucher. Substitution degree and fatty chain length influence on structure and properties of fatty acid cellulose esters. Carbohydrate Polymers, 2020, 234: 115912
https://doi.org/10.1016/j.carbpol.2020.115912
20 Z Chen, J Zhang, P Xiao, W Tian, J Zhang. Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4931–4939
https://doi.org/10.1021/acssuschemeng.7b04466
21 L Huang, Q Wu, Q Wang, M Wolcott. One-step activation and surface fatty acylation of cellulose fibers in a solvent-free condition. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 15920–15927
https://doi.org/10.1021/acssuschemeng.9b01974
22 S Kanwar, U Ali, K Mazumder. Effect of cellulose and starch fatty acid esters addition on microstructure and physical properties of arabinoxylan films. Carbohydrate Polymers, 2021, 270: 118317
https://doi.org/10.1016/j.carbpol.2021.118317
23 K N Onwukamike, S Grelier, E Grau, H Cramail, M A R Meier. Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 1826–1840
https://doi.org/10.1021/acssuschemeng.8b04990
24 P Wang, B Y Tao. Synthesis and characterization of long-chain fatty acid cellulose ester (FACE). Journal of Applied Polymer Science, 1994, 52(6): 755–761
https://doi.org/10.1002/app.1994.070520605
25 T Morooka, M Norimoto, T Yamada, N Shiraishi. Dielectric properties of cellulose acylates. Journal of Applied Polymer Science, 1984, 29(12): 3981–3990
https://doi.org/10.1002/app.1984.070291230
26 C J Malm, J W Mench, D L Kendall, G D Hiatt. Aliphatic acid esters of cellulose: preparation by acid-chloride-pyridine procedure. Industrial & Engineering Chemistry, 1951, 43(3): 684–688
https://doi.org/10.1021/ie50495a033
27 K S Guiao, A Gupta, C Tzoganakis, T H Mekonnen. Reactive extrusion as a sustainable alternative for the processing and valorization of biomass components. Journal of Cleaner Production, 2022, 355: 131840
https://doi.org/10.1016/j.jclepro.2022.131840
28 G Chatel, R S Varma. Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to green chemistry. Green Chemistry, 2019, 21(22): 6043–6050
https://doi.org/10.1039/C9GC02534K
29 P N Amaniampong, Q T Trinh, K De Oliveira Vigier, D Q Dao, N H Tran, Y Wang, M P Sherburne, F Jerome. Synergistic effect of high-frequency ultrasound with cupric oxide catalyst resulting in a selectivity switch in glucose oxidation under argon. Journal of the American Chemical Society, 2019, 141(37): 14772–14779
https://doi.org/10.1021/jacs.9b06824
30 L Lan, H Chen, D Lee, S Xu, N Skillen, A Tedstone, P Robertson, A Garforth, H Daly, C Hardacre, X Fan. Effect of ball-milling pretreatment of cellulose on its photoreforming for H2 production. ACS Sustainable Chemistry & Engineering, 2022, 10(15): 4862–4871
https://doi.org/10.1021/acssuschemeng.1c07301
31 C Yang, X Yuan, X Wang, K Wu, Y Liu, C Liu, H Lu, B Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol. Frontiers of Chemical Science and Engineering, 2020, 14(4): 605–613
https://doi.org/10.1007/s11705-019-1841-0
32 G Chatel, K De Oliveira Vigier, F Jerome. Sonochemistry: what potential for conversion of lignocellulosic biomass into platform chemicals?. ChemSusChem, 2014, 7(10): 2774–2787
https://doi.org/10.1002/cssc.201402289
33 M J Bussemaker, D Zhang. Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Industrial & Engineering Chemistry Research, 2013, 52(10): 3563–3580
https://doi.org/10.1021/ie3022785
34 Q Zhang, M Benoit, Oliveira Vigier K De, J Barrault, G Jégou, M Philippe, F Jérôme. Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chemistry, 2013, 15(4): 963–969
https://doi.org/10.1039/c3gc36643j
35 T Aimin, Z Hongwei, C Gang, X Guohui, L Wenzhi. Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrasonics Sonochemistry, 2005, 12(6): 467–472
https://doi.org/10.1016/j.ultsonch.2004.07.003
36 D F Hou, H Tan, M L Li, Y Tang, Z Y Liu, W Yang, M B Yang. Synthesis of thermoplastic cellulose grafted polyurethane from regenerated cellulose. Cellulose, 2020, 27(15): 8667–8679
https://doi.org/10.1007/s10570-020-03389-y
37 D F Hou, M L Li, C Yan, L Zhou, Z Y Liu, W Yang, M B Yang. Mechanochemical preparation of thermoplastic cellulose oleate by ball milling. Green Chemistry, 2021, 23(5): 2069–2078
https://doi.org/10.1039/D0GC03853A
38 G Samaranayake, W G Glasser. Cellulose derivatives with low DS. I. A novel acylation system. Carbohydrate Polymers, 1993, 22(1): 1–7
https://doi.org/10.1016/0144-8617(93)90159-2
39 L Zhou, Y M Zhai, M B Yang, W Yang. Flexible and tough cellulose nanocrystal/polycaprolactone hybrid aerogel based on the strategy of macromolecule cross-linking via click chemistry. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15617–15627
https://doi.org/10.1021/acssuschemeng.9b03640
40 M Jing, L Zhang, Z Fan, X Liu, Y Wang, C Liu, C Shen. Markedly improved hydrophobicity of cellulose film via a simple one-step aminosilane-assisted ball milling. Carbohydrate Polymers, 2022, 275: 118701
https://doi.org/10.1016/j.carbpol.2021.118701
41 C Liu, M C Li, W Chen, R Huang, S Hong, Q Wu, C Mei. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Carbohydrate Polymers, 2020, 246: 116548
https://doi.org/10.1016/j.carbpol.2020.116548
42 K N Onwukamike, S Grelier, E Grau, H Cramail, M A R Meier. Sustainable transesterification of cellulose with high oleic sunflower oil in a DBU-CO2 switchable solvent. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8826–8835
https://doi.org/10.1021/acssuschemeng.8b01186
43 M Jebrane, N Terziev, I Heinmaa. Biobased and sustainable alternative route to long-chain cellulose esters. Biomacromolecules, 2017, 18(2): 498–504
https://doi.org/10.1021/acs.biomac.6b01584
44 Y Zhong, J Wu, H Kang, R Liu. Choline hydroxide based deep eutectic solvent for dissolving cellulose. Green Chemistry, 2022, 24(6): 2464–2475
https://doi.org/10.1039/D1GC04130D
45 Y Xi, L Zhang, Y Tian, J Song, J Ma, Z Wang. Rapid dissolution of cellulose in an AlCl3/ZnCl2 aqueous system at room temperature and its versatile adaptability in functional materials. Green Chemistry, 2022, 24(2): 885–897
https://doi.org/10.1039/D1GC03918K
46 R Hirase, H Miyamoto, Y Yuguchi, C Yamane. Dissolution of cellulose into supercritical water and its dissolving state followed by structure formation from the solution system. Carbohydrate Polymers, 2022, 275: 118669
https://doi.org/10.1016/j.carbpol.2021.118669
47 Y Jing, C Wu, X Zhang, S Su, S Mahmud, J Zhu. Construction of anti-counterfeiting pattern on the cellulose film by in-situ regulation strategies. Cellulose, 2022, 29(14): 7751–7760
https://doi.org/10.1007/s10570-022-04729-w
48 L Zhang, Z Jiang, S Yang, Z Zeng, W Zhang, L Zhang. Different rheological behaviours of cellulose/tetrabutylammonium acetate/dimethyl sulfoxide/water mixtures. Cellulose, 2020, 27(14): 7967–7978
https://doi.org/10.1007/s10570-020-03363-8
49 L Wei, J Song, B Cheng, Z Yang. Synthesis, characterization and antibacterial properties of novel cellulose acetate sorbate. Carbohydrate Polymers, 2020, 243: 116416
https://doi.org/10.1016/j.carbpol.2020.116416
50 L Crépy, V Miri, N Joly, P Martin, J M Lefebvre. Effect of side chain length on structure and thermomechanical properties of fully substituted cellulose fatty esters. Carbohydrate Polymers, 2011, 83(4): 1812–1820
https://doi.org/10.1016/j.carbpol.2010.10.045
[1] FCE-22142-OF-HD_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed