Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (11): 1718-1727   https://doi.org/10.1007/s11705-023-2319-7
  本期目录
Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation
Shiqing Ma1, Chundong Peng1, Zeyu Jia1, Yanmei Feng1, Kai Chen3, Hao Ding1, Daimei Chen1(), Zhong-Yong Yuan2()
1. Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
2. School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
3. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring, and Pollution Control School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
 全文: PDF(5933 KB)   HTML
Abstract

In recent years, organic photocatalyst under visible-light absorption has shown significant potential for solving environmental problems. However, it is still a great challenge for constructing a highly active organic photocatalyst due to the low separation efficiency of photogenerated carriers. Herein, an effective and robust photocatalyst perylene-3,4,9,10-tetracarboxylic diamide/boron nitride quantum dots (PDI/BNQDs), consisting of self-assemble PDI with π–π stacking structure and BNQDs, has been constructed and researched under visible light irradiation. The PDI/BNQDs composite gradually increases organic pollutant photodegradation with the loading amount of BNQDs. With 10 mL of BNQDs solution added (PDI/BNQDs-10), the organic pollutant photodegradation performance reaches a maximum, about 6.16 times higher with methylene blue and 1.68 times higher with ciprofloxacin than that of pure PDI supramolecular. The enhancement is attributed to improved separation of photogenerated carriers from self-assembled PDI by BNQDs due to their preeminent ability to extract holes. This work is significant for the supplement of PDI supramolecular composite materials. We believe that this photocatalytic design is capable of expanding organic semiconductors’ potential for their applications in photocatalysis.

Key wordsPDI    boron nitride    quantum dots    photocatalysis    hole transfer
收稿日期: 2023-01-06      出版日期: 2023-10-25
Corresponding Author(s): Daimei Chen,Zhong-Yong Yuan   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1718-1727.
Shiqing Ma, Chundong Peng, Zeyu Jia, Yanmei Feng, Kai Chen, Hao Ding, Daimei Chen, Zhong-Yong Yuan. Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation. Front. Chem. Sci. Eng., 2023, 17(11): 1718-1727.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2319-7
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I11/1718
  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 L Wang, X Zhang, X Yu, E Gao, Z Shen, X Zhang, S Ge, J Liu, Z J Gu, C Chen. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Advanced Materials, 2019, 31(33): 190265
https://doi.org/10.1002/adma.201901965
2 J Chen, Y Li, J Li, J Han, G Zhu, L Ren. Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater. Frontiers of Chemical Science and Engineering, 2022, 16(7): 1125–1138
https://doi.org/10.1007/s11705-021-2116-0
3 C Peng, Z Jia, Y Zhong, W Ao, D Chen, R Wang, H Ding, X Wu, J Wang, G Du. Preparation of Bi3.64Mo0.36O6.55 by reflux method and its application in photodegradation of organic pollution. Journal of Materials Science Materials in Electronics, 2021, 32(13): 17890–17900
https://doi.org/10.1007/s10854-021-06324-4
4 Y Zhong, Z He, D Chen, D Hao, W Hao. Enhancement of photocatalytic activity of Bi2MoO6 by fluorine substitution. Applied Surface Science, 2019, 467: 740–748
https://doi.org/10.1016/j.apsusc.2018.10.185
5 H Takeda, H Kamiyama, K Okamoto, M Irimajiri, T Mizutani, K Koike, A Sekine, O Ishitani. Highly efficient and robust photocatalytic systems for CO2 reduction consisting of a Cu(I) photosensitizer and Mn(I) catalysts. Journal of the American Chemical Society, 2018, 140(49): 17241–17254
https://doi.org/10.1021/jacs.8b10619
6 H Miao, J Yang, Y Wei, W Li, Y Zhu. Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Applied Catalysis B: Environmental, 2018, 239: 61–67
https://doi.org/10.1016/j.apcatb.2018.08.009
7 D Hu, J Fu, S Chen, J Li, Q Yang, J Gao, H Tang, Z Kan, T Duan, S Lu, K Sun, Z Xiao. Block copolymers as efficients cathode interlayer materials for organic solar cells. Frontiers of Chemical Science and Engineering, 2021, 15(3): 571–578
https://doi.org/10.1007/s11705-020-2010-1
8 X Fang, Q Shang, Y Wang, L Jiao, T Yao, Y Li, Q Zhang, Y Luo, H L Jiang. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Advanced Materials, 2018, 30(7): 1705112
https://doi.org/10.1002/adma.201705112
9 G Wang, C T He, R Huang, J Mao, D Wang, Y Li. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. Journal of the American Chemical Society, 2020, 142(45): 19339–19345
https://doi.org/10.1021/jacs.0c09599
10 Y Zhao, H Liu, C Wu, Z Zhang, Q Pan, F Hu, R Wang, P Li, X Huang, Z Li. Fully sp2-carbon conjugated two-dimensional covalent organic frameworks as artificial photosystem I with unprecedented efficiency. Angewandte Chemie International Edition, 2019, 58(16): 5376–5381
https://doi.org/10.1002/anie.201901194
11 S Wang, D Li, C Sun, S Yang, Y Guan, H He. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Applied Catalysis B: Environmental, 2014, 144: 885–892
https://doi.org/10.1016/j.apcatb.2013.08.008
12 G Liao, Y Gong, L Zhang, H Gao, G J Yang, B Fang. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy & Environmental Science, 2019, 12(7): 2080–2147
https://doi.org/10.1039/C9EE00717B
13 X B Li, J Y Liu, J T Huang, C Z He, Z J Feng, Z Chen, L F Wan, F Deng. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Physico Chimica Sinica, 2021, 37(6): 2010030
14 J Yang, H Miao, J Jing, Y Zhu, W Choi. Photocatalytic activity enhancement of PDI supermolecular via π–π action and energy level adjusting with graphene quantum dots. Applied Catalysis B: Environmental, 2021, 281: 119547
https://doi.org/10.1016/j.apcatb.2020.119547
15 A Fateeva, P A Chater, C P Ireland, A A Tahir, Y Z Khimyak, P V Wiper, J R Darwent, M J Rosseinsky. A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis. Angewandte Chemie International Edition, 2021, 51(30): 7440–7444
https://doi.org/10.1002/anie.201202471
16 M Rafiq, Z Chen, H Tang, Z Hu, X Zhang, Y Xing, Y Li, F Huang. Water-alcohol-soluble hyperbranched polyelectrolytes and their application in polymer solar cells and photocatalysis. ACS Applied Polymer Materials, 2020, 2(1): 12–18
https://doi.org/10.1021/acsapm.9b00859
17 Z Zhang, Y Zhu, X Chen, H Zhang, J Wang. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Advanced Materials, 2019, 31(7): 1806626
https://doi.org/10.1002/adma.201806626
18 A S Weingarten, R V Kazantsev, L C Palmer, M McClendon, A R Koltonow, A P S Samuel, D J Kiebala, M R Wasielewski, S I Stupp. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nature Chemistry, 2014, 6(11): 964–970
https://doi.org/10.1038/nchem.2075
19 P Chen, L Blaney, G Cagnetta, J Huang, B Wang, Y Wang, S Deng, G Yu. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis. Environmental Science & Technology, 2019, 53(3): 1564–1575
https://doi.org/10.1021/acs.est.8b05827
20 Q Gao, J Xu, Z Wang, Y Zhu. Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n–n heterojunction via π–π interaction and interfacial charge separation. Applied Catalysis B: Environmental, 2020, 271: 118933
https://doi.org/10.1016/j.apcatb.2020.118933
21 W Cheng, H Chen, C Ji, R Yang, M Yin. A perylenediimide-based nanocarrier monitors curcumin release with an “off–on” fluorescence switch. Polymer Chemistry, 2019, 10(20): 2551–2558
https://doi.org/10.1039/C9PY00132H
22 Z Zhang, L Zhang, L Zhou, Y Lei, Y Zhang, C Huang. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biology, 2019, 25: 101047
https://doi.org/10.1016/j.redox.2018.11.005
23 T H Jung, B Yoo, L Wang, A Dodabalapur, B A Jones, A Facchetti, M R Wasielewski, T J Marks. Nanoscale n-channel and ambipolar organic field-effect transistors. Applied Physics Letters, 2006, 88(18): 183102
https://doi.org/10.1063/1.2200591
24 H Cheng, J Huai, L Gao, Z Li. Novel self-assembled phosphonic acids monolayers applied in N-channel perylene diimide (PDI) organic field effect transistors. Applied Surface Science, 2016, 378: 545–551
https://doi.org/10.1016/j.apsusc.2016.03.228
25 A G Macedo, L P Christopholi, A E X Gavim, J F de Deus, M A M Teridi, A B Yusoff, W J da Silva. Perylene derivatives for solar cells and energy harvesting: a review of materials, challenges and advances. Journal of Materials Science Materials in Electronics, 2019, 30(17): 15803–15824
https://doi.org/10.1007/s10854-019-02019-z
26 S V Dayneko, E Cieplechowicz, S S Bhojgude, J F Van Humbeck, M Pahlevani, G C Welch. Improved performance of solution processed OLEDs using N-annulated perylene diimide emitters with bulky side-chains. Materials Advances, 2021, 2(3): 933–936
https://doi.org/10.1039/D0MA00827C
27 L Ma, D Qin, Y Liu, X Zhan. n-Type organic light-emitting transistors with high mobility and improved air stability. Journal of Materials Chemistry C, 2018, 6(3): 535–540
https://doi.org/10.1039/C7TC04556E
28 J Yang, C Liu, C Cai, X Hu, Z Huang, X Duan, X Meng, Z Yuan, L Tan, Y Chen. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylene diimide. Advanced Energy Materials, 2019, 9(18): 1900198
https://doi.org/10.1002/aenm.201900198
29 Y O Kim, B J Moon, A Lee, J I Kim, S K Lee, Y S Lee, S Bae, B H Hong, Y C Jung. A multifunctional tyrosine-immobilized PAH molecule as a universal cathode interlayer enables high-efficiency inverted polymer solar cells. Advanced Optical Materials, 2021, 9(21): 2101006
https://doi.org/10.1002/adom.202101006
30 W Wang, X Li, F Deng, J Liu, X Gao, J Huang, J Xu, Z Feng, Z Chen, L Han. Novel organic/inorganic PDI-urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production. Chinese Chemical Letters, 2022, 33(12): 5200–5207
https://doi.org/10.1016/j.cclet.2022.01.058
31 X Li, B Kang, F Dong, F Deng, L Han, X Gao, J Xu, X Hou, Z Feng, Z Chen, L Liu, J Huang. BiOBr with oxygen vacancies capture 0D black phosphorus quantum dots for high efficient photocatalytic ofloxacin degradation. Applied Surface Science, 2022, 539: 153422
https://doi.org/10.1016/j.apsusc.2022.153422
32 W Wei, Z Wei, D Liu, Y Zhu. Enhanced visible-light photocatalysis via back-electron transfer from palladium quantum dots to perylene diimide. Applied Catalysis B: Environmental, 2018, 230: 49–57
https://doi.org/10.1016/j.apcatb.2018.02.032
33 R Han, F Liu, X Wang, M Huang, W Li, Y Yamauchi, X Sun, Z Huang. Functionalised hexagonal boron nitride for energy conversion and storage. Journal of Materials Chemistry A, 2020, 8(29): 14384–14399
https://doi.org/10.1039/D0TA05008C
34 H Li, R Y Tay, S H Tsang, X Zhen, E H T Teo. Controllable synthesis of highly luminescent boron nitride quantum dots. Small, 2015, 11(48): 6491–6499
https://doi.org/10.1002/smll.201501632
35 Y Yang, C Zhang, D Huang, G Zeng, J Huang, C Lai, C Zhou, W Wang, H Guo, W Xue, R Deng, M Cheng, W Xiong. Boron nitride quantum dots decorated ultrathin porous g-C3N4: intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental, 2019, 245: 87–99
https://doi.org/10.1016/j.apcatb.2018.12.049
36 Y Guo, Y Nie, Z Liang, W Peilin, Q Ma. Ag3PO4 NP@MoS2 nanosheet enhanced F, S-doped BN quantum dot electrochemiluminescence biosensor for K-ras tumor gene detection. Talanta, 2021, 228: 122221
https://doi.org/10.1016/j.talanta.2021.122221
37 B Huo, B Liu, T Chen, L Cui, G Xu, M Liu, J Liu. One-step synthesis of fluorescent boron nitride quantum dots via a hydrothermal strategy using melamine as nitrogen source for the detection of ferric ions. Langmuir, 2017, 33(40): 10673–10678
https://doi.org/10.1021/acs.langmuir.7b01699
38 Z Wei, M Liu, Z Zhang, W Yao, H Tan, Y Zhu. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy & Environmental Science, 2018, 11(9): 2581–2589
https://doi.org/10.1039/C8EE01316K
39 C Li, H Che, C Liu, G Che, P A Charpentier, W Xu, X Wang, L Liu. Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunctiontowards enhancing photodegradation activity under visible light. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 669–681
https://doi.org/10.1016/j.jtice.2018.10.011
40 G Cassabois, P Valvin, B Gil. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics, 2016, 10(4): 262–266
https://doi.org/10.1038/nphoton.2015.277
41 Y Ding, P He, S Li, B Chang, S Zhang, Z Wang, J Chen, J Yu, S Wu, H Zeng, L Tao. Efficient full-color boron nitride quantum dots for thermostable flexible displays. ACS Nano, 2021, 15(9): 14610–14617
https://doi.org/10.1021/acsnano.1c04321
[1] FCE-23002-OF-MS_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed