Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (10): 1470-1483   https://doi.org/10.1007/s11705-023-2329-5
  本期目录
Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum dots
Nan Li2(), Yumeng Zhang1, Peng Li1, Bo Zhu1, Wei Wang1, Zhiwei Xu1()
1. State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China
2. State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China
 全文: PDF(2385 KB)   HTML
Abstract

In this paper, graphene oxide quantum dots with amino groups (NH2-GOQDs) were tailored to the surface of a thin-film composite (TFC) membrane surface for optimizing forward osmosis (FO) membrane performance using the amide coupling reaction. The results jointly demonstrated hydrophilicity and surface roughness of the membrane enhanced after grafting NH2-GOQDs, leading to the optimized affinity and the contact area between the membrane and water molecules. Therefore, grafting of the membrane with a concentration of 100 ppm (TFC-100) exhibited excellent permeability performance (58.32 L·m–2·h–1) compared with TFC membrane (16.94 L·m–2·h–1). In the evaluation of static antibacterial properties of membranes, TFC-100 membrane destroyed the cell morphology of Escherichia coli (E. coli) and reduced the degree of bacterial adsorption. In the dynamic biofouling experiment, TFC-100 membrane showed a lower flux decline than TFC membrane. After the physical cleaning, the flux of TFC-100 membrane could recover to 96% of the initial flux, which was notably better than that of TFC membrane (63%). Additionally, the extended Derjaguin–Landau–Verwey–Overbeek analysis of the affinity between pollutants and membrane surface verified that NH2-GOQDs alleviates E. coli contamination of membrane. This work highlights the potential applications of NH2-GOQDs for optimizing permeability and biofouling mitigation of FO membranes.

Key wordsforward osmosis membrane    graphene oxide quantum dots    graft modification    anti-fouling membrane    XDLVO theory
收稿日期: 2023-01-04      出版日期: 2023-10-07
Corresponding Author(s): Nan Li,Zhiwei Xu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1470-1483.
Nan Li, Yumeng Zhang, Peng Li, Bo Zhu, Wei Wang, Zhiwei Xu. Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum dots. Front. Chem. Sci. Eng., 2023, 17(10): 1470-1483.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2329-5
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I10/1470
Fig.1  
Fig.2  
Fig.3  
Fig.4  
MembraneRq/nmRa/nmContact angle/(° )
TFC79.660.179.0 ± 2.2
TFC-5085.774.333 ± 1.5
TFC-100123.083.627.0 ± 1.2
TFC-15065.652.340.0 ± 0.7
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
MembraneJv/(L·m–2·h–1)Js/(g·m–2·h–1)(Js/Jv)/(g·L–1)FRF/%FRR/%
TFC-CNT [37]10.12 ± 1.052.51 ± 0.500.3038%
TFN-GOQD [37]20.21 ± 1.256.01 ± 0.500.2455%
TFN-GOQD/Ag [37]35.24 ± 1.258.13 ± 0.500.2258%
TiO2/AgNPs-TFC [38]56.49 ± 3.8968%
GQD-TFN [39]20.00 ± 1.0065%
TFC-FOPSF/GO [40]51.480.61 ± 0.050.01
TFC-FOPA/GO [40]54.850.25 ± 0.050.005
TFC-FOPSF-PA/GO [40]29.850.42 ± 0.050.01
GPANILM [41]8.01 ± 1.256.51 ± 0.100.7971.6%
GPANILM-140 [41]6.21 ± 1.254.50 ± 0.100.6979.9%
TFN-FO [42]34.3 ± 0.10
TFN0.6 [43]33
PESU-TFC [44]20.60 ± 1.50
Matrimid-TFC [44]14.00 ± 1.50
sPPSU -TFC [44]22.00 ± 1.50
PA-sPES [45]11.25 ± 0.509.00 ± 0.500.8
APIS-sPES [45]21.25 ± 0.108.00 ± 0.100.37
ZTFC [46]17.50 ± 2.507.50 ± 2.50
CTFC [46]11.25 ± 2.0050%
ZTFC-Ag [46]15.20 ± 3.0096%
Ag-PDA modified membrane [47]13.3195%
PSBMA modified membrane [48]90%
TFC (This work)16.94 ± 1.258.30 ± 1.250.4945%63%
TFC-100 (This work)58.32 ± 4.0511.00 ± 1.250.2169%96%
Tab.2  
MembranesContact angle/(° )Interaction free energy of the minimum equilibrium distance/(mJ·m–2)Zeta potential/mV
WaterGlycerolDiiodomethaneΔGy0LWΔGy0ABΔGy0ELΔGy0TOT
TFC79.0 ± 2.263.4 ± 1.843.1 ± 1.6–2.640–25.49–0.130–28.26–20
TFC-10027.0 ± 1.265.2 ± 1.515.6 ± 0.7–6.2918.965–3.677 × 10?62.674–23
Tab.3  
1 P Li, K Teng, C Guo, H Shi, B Li, X Pei, W Wang, Z Xu. Synergistic effect of polyvinyl alcohol sub-layer and graphene oxide condiment from active layer on desalination behavior of forward osmosis membrane. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112: 366–376
https://doi.org/10.1016/j.jtice.2020.05.009
2 A Andrzejewski, M Krajewska, J Nowak-Grzebyta, M Szczygiełda, E Stachowska, K Prochaska. Concentration of pectin solution: forward osmosis performance and fouling analysis. Journal of Membrane Science, 2022, 653: 120503
https://doi.org/10.1016/j.memsci.2022.120503
3 F Yu, H Shi, J Shi, K Teng, Z Xu, X Qian. High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer. Journal of Membrane Science, 2020, 616: 118611
https://doi.org/10.1016/j.memsci.2020.118611
4 X Yao, R R Gonzales, Y Sasaki, Y Lin, Q Shen, P Zhang, T Shintani, K Nakagawa, H Matsuyama. Surface modification of FO membrane for improving ammoniacal nitrogen (NH4+-N) rejection: investigating the factors influencing NH4+-N rejection. Journal of Membrane Science, 2022, 650: 120429
https://doi.org/10.1016/j.memsci.2022.120429
5 N A Mahat, S A Shamsudin, N Jullok, A H Ma’radzi. Carbon quantum dots embedded polysulfone membranes for antibacterial performance in the process of forward osmosis. Desalination, 2020, 493: 114618
https://doi.org/10.1016/j.desal.2020.114618
6 F Perreault, M Tousley, M Elimelech. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environmental Science & Technology Letters, 2013, 1(1): 71–76
https://doi.org/10.1021/ez4001356
7 H M Hegab, A Elmekawy, T G Barclay, A Michelmore, L Zou, C P Saint, M Ginic-Markovic. Effective in-situ chemical surface modification of forward osmosis membranes with polydopamine—induced graphene oxide for biofouling mitigation. Desalination, 2016, 385: 126–137
https://doi.org/10.1016/j.desal.2016.02.021
8 N Akther, Z Yuan, Y Chen, S Lim, S Phuntsho, N Ghaffour, H Matsuyama, H Shon. Influence of graphene oxide lateral size on the properties and performances of forward osmosis membrane. Desalination, 2020, 484: 114421
https://doi.org/10.1016/j.desal.2020.114421
9 X H Ma, Z Yang, Z K Yao, H Guo, Z L Xu, C Y Y Tang. Interfacial polymerization with electrosprayed microdroplets: toward controllable and ultrathin polyamide membranes. Environmental Science & Technology Letters, 2018, 5(2): 117–122
https://doi.org/10.1021/acs.estlett.7b00566
10 D D Shao, W J Yang, H F Xiao, Z Y Wang, C Zhou, X L Cao, S P Sun. Self-cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine. ACS Applied Materials & Interfaces, 2020, 12(1): 580–590
https://doi.org/10.1021/acsami.9b16704
11 Y Q Lin, Q Shen, Y Kawabata, J Segawa, X Z Cao, K C Guan, T Istirokhatun, T Yoshioka, H Matsuyama. Graphene quantum dots (GQDs)-assembled membranes with intrinsic functionalized nanochannels for high-performance nanofiltration. Chemical Engineering Journal, 2021, 420: 127602
https://doi.org/10.1016/j.cej.2020.127602
12 H Zeng, S He, S S Hosseini, B Zhu, L Shao. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Advanced Membranes, 2022, 2: 100015
https://doi.org/10.1016/j.advmem.2021.100015
13 Q Gu, T C A Ng, I Zain, X Liu, L Zhang, Z Zhang, Z Lyu, Z He, H Y Ng, J Wang. Chemical-grafting of graphene oxide quantum dots (GOQDs) onto ceramic microfiltration membranes for enhanced water permeability and anti-organic fouling potential. Applied Surface Science, 2020, 502: 144128
https://doi.org/10.1016/j.apsusc.2019.144128
14 D Wang, Y Zhang, Z Cai, S You, Y Sun, Y Dai, R Wang, S Shao, J Zou. Corn stalk-derived carbon quantum dots with abundant amino groups as a selective-layer modifier for enhancing chlorine resistance of membranes. ACS Applied Materials & Interfaces, 2021, 13(19): 22621–22634
https://doi.org/10.1021/acsami.1c04777
15 Z Xu, P Li, N Li, W Wang, C Guo, M Shan, X Qian. Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability. Journal of Colloid and Interface Science, 2021, 589: 486–499
https://doi.org/10.1016/j.jcis.2021.01.004
16 Y Feng, G Han, T S Chung, M Weber, N Widjojo, C Maletzko. Effects of polyethylene glycol on membrane formation and properties of hydrophilic sulfonated polyphenylenesulfone (sPPSU) membranes. Journal of Membrane Science, 2017, 531: 27–35
https://doi.org/10.1016/j.memsci.2017.02.040
17 Z Shabani, T Mohammadi, N Kasiri, S Sahebi. Development of high-performance thin-film composite FO membrane by tailoring co-deposition of dopamine and m-phenylenediamine for the caspian seawater desalination. Desalination, 2022, 527: 115577
https://doi.org/10.1016/j.desal.2022.115577
18 N Akther, Y Kawabata, S Lim, T Yoshioka, S Phuntsho, H Matsuyama, H K Shon. Effect of graphene oxide quantum dots on the interfacial polymerization of a thin-film nanocomposite forward osmosis membrane: an experimental and molecular dynamics study. Journal of Membrane Science, 2021, 630: 119309
https://doi.org/10.1016/j.memsci.2021.119309
19 A Tiraferri, C D Vecitis, M Elimelech. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Applied Materials & Interfaces, 2011, 3(8): 2869–2877
https://doi.org/10.1021/am200536p
20 Z Grabarek, J Gergely. Zero-length crosslinking procedure with the use of active esters. Analytical Biochemistry, 1990, 185(1): 131–135
https://doi.org/10.1016/0003-2697(90)90267-D
21 J V Staros, R W Wright, D M Swingle. Enhancement by n-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Analytical Biochemistry, 1986, 156(1): 220–222
https://doi.org/10.1016/0003-2697(86)90176-4
22 H Tetsuka, R Asahi, A Nagoya, K Okamoto, I Tajima, R Ohta, A Okamoto. Optically tunable amino-functionalized graphene quantum dots. Advanced Materials, 2012, 24(39): 5333–5338
https://doi.org/10.1002/adma.201201930
23 H Sun, N Gao, L Wu, J Ren, W Wei, X Qu. Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chemistry, 2013, 19(40): 13362–13368
https://doi.org/10.1002/chem.201302268
24 M Fathizadeh, H N Tien, K Khivantsev, Z Song, F Zhou, M Yu. Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination, 2019, 451: 125–132
https://doi.org/10.1016/j.desal.2017.07.014
25 Y Wang, Z Fang, S Zhao, D Ng, J Zhang, Z Xie. Dopamine incorporating forward osmosis membranes with enhanced selectivity and antifouling properties. RSC Advances, 2018, 8(40): 22469–22481
https://doi.org/10.1039/C8RA03166E
26 Y Li, Y Hu, Y Zhao, G Q Shi, L E Deng, Y B Hou, L T Qu. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Advanced Materials, 2011, 23(6): 776–780
https://doi.org/10.1002/adma.201003819
27 S Veríssimo, K V Peinemann, J Bordado. Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes. Journal of Membrane Science, 2006, 279(1): 266–275
https://doi.org/10.1016/j.memsci.2005.12.014
28 L Xu, J Xu, B Shan, X Wang, C Gao. Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination. Journal of Materials Chemistry A, 2017, 5(17): 7920–7932
https://doi.org/10.1039/C7TA00492C
29 Z Xu, J Zhang, M Shan, Y Li, B Li, J Niu, B Zhou, X Qian. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. Journal of Membrane Science, 2014, 458: 1–13
https://doi.org/10.1016/j.memsci.2014.01.050
30 J Wang, X A J E Sun, E Science. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy & Environmental Science, 2012, 5(1): 5163–5185
https://doi.org/10.1039/C1EE01263K
31 X Song, Y Wang, C Jiao, M Huang, G H Wang, H Jiang. Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination. Journal of Membrane Science, 2020, 597: 117783
https://doi.org/10.1016/j.memsci.2019.117783
32 X W Hu, Y Wang, J O Yang, Y Li, P Wu, H J Zhang, D Z Yuan, Y Liu, Z Y Wu, Z R Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1029–1038
https://doi.org/10.1007/s11705-019-1898-9
33 H M Hegab, A Elmekawy, T G Barclay, A Michelmore, L Zou, C P Saint, M Ginic-Markovic. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Applied Materials & Interfaces, 2015, 7(32): 18004–18016
https://doi.org/10.1021/acsami.5b04818
34 Z Zeng, D Yu, Z He, J Liu, F X Xiao, Y Zhang, R Wang, D Bhattacharyya, T T Tan. Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances. Scientific Reports, 2016, 6(1): 20142
https://doi.org/10.1038/srep20142
35 D J Miller, P A Araújo, P B Correia, M M Ramsey, J C Kruithof, Loosdrecht M C M van, B D Freeman, D R Paul, M Whiteley, J S Vrouwenvelder. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Research, 2012, 46(12): 3737–3753
https://doi.org/10.1016/j.watres.2012.03.058
36 R Bernstein, V Freger, J H Lee, Y G Kim, J Lee, M Herzberg. ‘Should I stay or should I go?’ Bacterial attachment vs biofilm formation on surface-modified membranes. Biofouling, 2014, 30(3): 367–376
https://doi.org/10.1080/08927014.2013.876011
37 D Wang, S Li, F Li, J Li, N Li, Z Wang. Thin film nanocomposite membrane with triple-layer structure for enhanced water flux and antibacterial capacity. Science of the Total Environment, 2021, 770: 145370
https://doi.org/10.1016/j.scitotenv.2021.145370
38 H Chen, S Zheng, L Meng, G Chen, X Luo, M Huang. Comparison of novel functionalized nanofiber forward osmosis membranes for application in antibacterial activity and TRGs rejection. Journal of Hazardous Materials, 2020, 392: 122250
https://doi.org/10.1016/j.jhazmat.2020.122250
39 S F Seyedpour, A Rahimpour, A A Shamsabadi, M Soroush. Improved performance and antifouling properties of thin-film composite polyamide membranes modified with nano-sized bactericidal graphene quantum dots for forward osmosis. Chemical Engineering Research & Design, 2018, 139: 321–334
https://doi.org/10.1016/j.cherd.2018.09.041
40 C Dai, D Zhao, Y Wang, R Zhao, H Wang, X Wu, S Liu, H Zhu, J Fu, M Zhang, H Ding. Impact of graphene oxide on properties and structure of thin-film composite forward osmosis membranes. Polymers, 2022, 14(18): 3874
https://doi.org/10.3390/polym14183874
41 A Shakeri, H Salehi, M Rastgar. Antifouling electrically conductive membrane for forward osmosis prepared by polyaniline/graphene nanocomposite. Journal of Water Process Engineering, 2019, 32: 100932
https://doi.org/10.1016/j.jwpe.2019.100932
42 A Saeedi-Jurkuyeh, A J Jafari, R R Kalantary, A Esrafili. A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. Reactive & Functional Polymers, 2020, 146: 104397
https://doi.org/10.1016/j.reactfunctpolym.2019.104397
43 D Emadzadeh, W J Lau, T Matsuura, A F Ismail, M Rahbari-Sisakht. Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. Journal of Membrane Science, 2014, 449: 74–85
https://doi.org/10.1016/j.memsci.2013.08.014
44 Y Cui, X Y Liu, T S Chung, M Weber, C Staudt, C Maletzko. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of fo as an alternative method to reverse osmosis (RO). Water Research, 2016, 91: 104–114
https://doi.org/10.1016/j.watres.2016.01.001
45 Y C Chen, Q C Ge. A bifunctional zwitterion that serves as both a membrane modifier and a draw solute for forward osmosis wastewater treatment. ACS Applied Materials & Interfaces, 2019, 11(39): 36118–36129
https://doi.org/10.1021/acsami.9b13142
46 M Qiu, C J He. Novel zwitterion-silver nanocomposite modified thin-film composite forward osmosis membrane with simultaneous improved water flux and biofouling resistance property. Applied Surface Science, 2018, 455: 492–501
https://doi.org/10.1016/j.apsusc.2018.06.020
47 A Soroush, W Ma, Y Silvino, M S Rahaman. Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environmental Science Nano, 2015, 2(4): 395–405
https://doi.org/10.1039/C5EN00086F
48 C Liu, J Lee, J Ma, M Elimelech. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer. Environmental Science & Technology, 2017, 51(4): 2161–2169
https://doi.org/10.1021/acs.est.6b05992
[1] FCE-23009-OF-LN_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed