Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (4): 44   https://doi.org/10.1007/s11705-024-2405-5
  本期目录
Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation
Ying Li1,2, Lu Wang1, Junyan Xie1, Yong Dai1, Xuehong Gu1, Xuerui Wang1()
1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
2. Quzhou Membrane Material Innovation Institute, Quzhou 324000, China
 全文: PDF(5776 KB)   HTML
Abstract

Membrane gas separation is considered an energy-saving technique to extract He from natural gas due to no phase change and room temperature operation. However, the membrane performance was strongly limited by the trade-off between permeance and selectivity. Herein, novel 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA)-2,2′-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (APAF)-5-amino-2-(4-aminobenzene)benzimidazole (BIA) asymmetric membranes with a thickness of 300 nm were successfully prepared by the non-solvent induced phase separation method. The membrane performance was modulated by regulating dope solution compositions (e.g., tetrahydrofuran and polymer concentration). The ideal He/CH4 selectivity was 124 and the optimized He permeance reached 87 GPU, beyond the current upper bound. He/CH4 selectivity was 75 and He permeance was 73 GPU for the binary mixture feed containing 0.2 mol % He. The membrane showed good resistance to CO2 and C2H6, which are the typical impurities in natural gas. The 6FDA-APAF-BIA membranes have good stability (> 160 h), which can provide great potential in He extraction from natural gas.

Key wordsHe separation    membrane    natural gas    copolyimide
收稿日期: 2023-11-20      出版日期: 2024-03-19
Corresponding Author(s): Xuerui Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(4): 44.
Ying Li, Lu Wang, Junyan Xie, Yong Dai, Xuehong Gu, Xuerui Wang. Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation. Front. Chem. Sci. Eng., 2024, 18(4): 44.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2405-5
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I4/44
Fig.1  
No.NMP/wt %Polymer/wt %Ethanol/wt %THF/wt %
M160201010
M257.522.51010
M355251010
M452.527.51010
M550301010
M65525200
M75525155
M855251010
M95525515
M105525020
Tab.1  
Fig.2  
Fig.3  
Fig.4  
No.He/CH4He/N2
PHe/GPUαHe/CH4PHe/GPUαHe/N2
M119071958
M2167916910
M393489631
M422542338
M520242018
M61201212114
M785808660
M874477527
M936473826
M1014231518
M1188758954
M1280808359
M1391749252
M1476837961
Tab.2  
P/GPU Ideal selectivity
HeH2CO2N2CH4He/H2He/CO2He/N2He/CH4
8766191.20.71.34.673124
Tab.3  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 C J Berganza , J H Zhang . The role of helium gas in medicine. Medical Gas Research, 2013, 3(1): 18
https://doi.org/10.1186/2045-9912-3-18
2 Z Dai , J Deng , X He , C A Scholes , X Jiang , B Wang , H Guo , Y Ma , L Deng . Helium separation using membrane technology: recent advances and perspectives. Separation and Purification Technology, 2021, 274: 119044
https://doi.org/10.1016/j.seppur.2021.119044
3 J Sunarso , S S Hashim , Y S Lin , S M Liu . Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383
https://doi.org/10.1016/j.seppur.2016.12.020
4 M Alders , D Winterhalder , M Wessling . Helium recovery using membrane processes. Separation and Purification Technology, 2017, 189: 433–440
https://doi.org/10.1016/j.seppur.2017.07.084
5 S A A Mansoori , M Pakizeh , A Jomekian . CO2 and H2 selectivity properties of PDMS/PSf membrane prepared at different conditions. Frontiers of Chemical Science and Engineering, 2011, 5(4): 500–513
https://doi.org/10.1007/s11705-011-1108-x
6 P K Gantzel , U Merten . Gas separations with high-flux cellulose acetate membranes. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(2): 331–332
https://doi.org/10.1021/i260034a028
7 C L Aitken , W J Koros , D R Paul . Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules, 1992, 25(13): 3424–3434
https://doi.org/10.1021/ma00039a018
8 D F Sanders , Z P Smith , R Guo , L M Robeson , J E McGrath , D R Paul , B D Freeman . Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer, 2013, 54(18): 4729–4761
https://doi.org/10.1016/j.polymer.2013.05.075
9 E Esposito , I Mazzei , M Monteleone , A Fuoco , M Carta , N B McKeown , R Malpass-Evans , J C Jansen . Highly permeable matrimid®/PIM-EA(H2)-TB blend membrane for gas separation. Polymers, 2018, 11(1): 46
https://doi.org/10.3390/polym11010046
10 M Yavari , M Fang , H Nguyen , T C Merkel , H Lin , Y Okamoto . Dioxolane-based perfluoropolymers with superior membrane gas separation properties. Macromolecules, 2018, 51(7): 2489–2497
https://doi.org/10.1021/acs.macromol.8b00273
11 Y Yampolskii , N Belov , A Alentiev . Perfluorinated polymers as materials of membranes for gas and vapor separation. Journal of Membrane Science, 2020, 598: 117779
https://doi.org/10.1016/j.memsci.2019.117779
12 M Fang , Z He , T C Merkel , Y Okamoto . High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement. Journal of Materials Chemistry A, 2018, 6(2): 652–658
https://doi.org/10.1039/C7TA09047A
13 K Li , Q Li , Z Cai , Y Weng , C Ye , W Ji , J Li , B Cheng , X Ma . Microporosity effect of intrinsic microporous polyimide membranes on their helium enrichment performance after direct fluorination. Journal of Membrane Science, 2022, 660: 120868
https://doi.org/10.1016/j.memsci.2022.120868
14 X Jiang , X Xiao , J Dong , X Xu , X Zhao , Q Zhang . Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes. Journal of Membrane Science, 2018, 564: 605–616
https://doi.org/10.1016/j.memsci.2018.07.068
15 L Wang , Y Li , L Pu , M Yang , H Lu , X Gu , X Wang . Copolyimide membranes fabricated by nonsolvent-induced phase separation for helium extraction from natural gas. Separation and Purification Technology, 2023, 313: 123455
https://doi.org/10.1016/j.seppur.2023.123455
16 L Wang , Y Li , P Zhang , X Chen , P Nian , Y Wei , H Lu , X Gu , X Wang . Thermally rearranged poly(benzoxazole-co-imide) composite membranes on α-Al2O3 support for helium extraction from natural gas. Journal of Membrane Science, 2022, 657: 120614
https://doi.org/10.1016/j.memsci.2022.120614
17 Y Jiao , M Liu , Q Wu , P Zheng , W Xu , B Ye , H Zhang , R Guo , S Luo . Finely tuning the microporosity in phosphoric acid doped triptycene-containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery. Journal of Membrane Science, 2023, 672: 121474
https://doi.org/10.1016/j.memsci.2023.121474
18 Y Zhuang , J Seong , W H Lee , Y Do , M J Lee , G Wang , M Guiver , Y M Lee . Mechanically tough, thermally rearranged (TR) random/block poly(benzoxazole-co-imide) gas separation membranes. Macromolecules, 2015, 48(15): 5286–5299
https://doi.org/10.1021/acs.macromol.5b00930
19 F Gan , J Dong , S Zheng , X Zhao , Q Zhang . Constructing gas molecule transport channels in thermally rearranged multiblock poly(benzoxazole-co-imide) membranes for effective CO2/CH4 separation. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9669–9679
https://doi.org/10.1021/acssuschemeng.0c01224
20 J Pan , L Zhang , Z Wang , S P Sun , Z Cui , N Tavajohi . Poly(vinylidene fluoride-co-hexafluoro propylene) membranes prepared via thermally induced phase separation and application in direct contact membrane distillation. Frontiers of Chemical Science and Engineering, 2022, 16(5): 720–730
https://doi.org/10.1007/s11705-021-2098-y
21 C Ge , M Sheng , Y Yuan , F Shi , Y Yang , S Zhao , J Wang , Z Wang . Recent advances of the interfacial polymerization process in gas separation membranes fabrication. Journal of Membrane Science, 2023, 683: 121854
https://doi.org/10.1016/j.memsci.2023.121854
22 Y Li , J Shen , K Guan , G Liu , H Zhou , W Jin . PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation. Journal of Membrane Science, 2016, 510: 338–347
https://doi.org/10.1016/j.memsci.2016.03.013
23 X Wang , M Shan , X Liu , M Wang , C M Doherty , D Osadchii , F Kapteijn . High-performance polybenzimidazole membranes for helium extraction from natural gas. ACS Applied Materials & Interfaces, 2019, 11(22): 20098–20103
https://doi.org/10.1021/acsami.9b05548
24 S H Choi , M M B Sultan , A A Alsuwailem , S M Zuabi . Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures. Separation and Purification Technology, 2019, 222: 152–161
https://doi.org/10.1016/j.seppur.2019.04.036
25 I Pinnau , W J Koros . A qualitative skin layer formation mechanism for membranes made by dry/wet phase inversion. Journal of Polymer Science Part B: Polymer Physics, 1993, 31(4): 419–427
https://doi.org/10.1002/polb.1993.090310406
26 M R Kosuri , W J Koros . Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO2 separations. Journal of Membrane Science, 2008, 320(1–2): 65–72
https://doi.org/10.1016/j.memsci.2008.03.062
27 S H Pak , Y W Jeon , M S Shin , H C Koh . Preparation of cellulose acetate hollow-fiber membranes for CO2/CH4 separation. Environmental Engineering Science, 2016, 33(1): 17–24
https://doi.org/10.1089/ees.2015.0201
28 G Dibrov , M Ivanov , M Semyashkin , V Sudin , G Kagramanov . High-pressure aging of asymmetric Torlon® hollow fibers for helium separation from natural gas. Fibers, 2018, 6(4): 83
https://doi.org/10.3390/fib6040083
29 A T Bridge , B J Pedretti , J F Brennecke , B D Freeman . Preparation of defect-free asymmetric gas separation membranes with dihydrolevoglucosenone (CyreneTM) as a greener polar aprotic solvent. Journal of Membrane Science, 2022, 644: 120173
https://doi.org/10.1016/j.memsci.2021.120173
30 T Zhou , M Shi , L Chen , C Gong , P Zhang , J Xie , X Wang , X Gu . Fluorine-free synthesis of all-silica STT zeolite membranes for H2/CH4 separation. Chemical Engineering Journal, 2022, 433: 133567
https://doi.org/10.1016/j.cej.2021.133567
31 T S Chung , S K Teoh , X Hu . Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes. Journal of Membrane Science, 1997, 133(2): 161–175
https://doi.org/10.1016/S0376-7388(97)00101-4
32 S Kim , S H Han , Y M Lee . Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403–404: 169–178
https://doi.org/10.1016/j.memsci.2012.02.041
33 K T Woo , J Lee , G Dong , J S Kim , Y S Do , W S Hung , K R Lee , G Barbieri , E Drioli , Y M Lee . Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance. Journal of Membrane Science, 2015, 490: 129–138
https://doi.org/10.1016/j.memsci.2015.04.059
34 D T Clausi , W J Koros . Formation of defect-free polyimide hollow fiber membranes for gas separations. Journal of Membrane Science, 2000, 167(1): 79–89
https://doi.org/10.1016/S0376-7388(99)00276-8
35 F Gan , J Dong , X Xu , M Li , X Zhao , Q Zhang . Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing heteroaromatic moieties for CO2/CH4 separation. Polymer, 2019, 185: 121945
https://doi.org/10.1016/j.polymer.2019.121945
36 J S McHattie , W J Koros , D R Paul . Gas transport properties of polysulphones: 2. Effect of bisphenol connector groups. Polymer, 1991, 32(14): 2618–2625
https://doi.org/10.1016/0032-3861(91)90343-H
37 S H Choi , M S Qahtani , E A Qasem . Multilayer thin-film composite membranes for helium enrichment. Journal of Membrane Science, 2018, 553: 180–188
https://doi.org/10.1016/j.memsci.2018.02.057
38 J Kostina , O Rusakova , G Bondarenko , A Alentiev , T Meleshko , N Kukarkina , A Yakimanskii , Y Yampolskii . Thermal rearrangement of functionalized polyimides: IR-spectral, quantum chemical studies, and gas permeability of TR polymers. Industrial & Engineering Chemistry Research, 2013, 52(31): 10476–10483
https://doi.org/10.1021/ie3034043
39 M A Abdulhamid , G Genduso , Y Wang , X Ma , I Pinnau . Plasticization-resistant carboxyl-functionalized 6FDA-polyimide of intrinsic microporosity (PIM-PI) for membrane-based gas separation. Industrial & Engineering Chemistry Research, 2020, 59(12): 5247–5256
https://doi.org/10.1021/acs.iecr.9b04994
40 C Gong , X Peng , M Zhu , T Zhou , L You , S Ren , X Wang , X Gu . Synthesis and performance of STT zeolite membranes for He/N2 and He/CH4 separation. Separation and Purification Technology, 2022, 301: 121927
https://doi.org/10.1016/j.seppur.2022.121927
41 P Zhang , C Gong , T Zhou , P Du , J Song , M Shi , X Wang , X Gu . Helium extraction from natural gas using DD3R zeolite membranes. Chinese Journal of Chemical Engineering, 2022, 49: 122–129
https://doi.org/10.1016/j.cjche.2021.09.004
42 C A Scholes , U Ghosh . Helium separation through polymeric membranes: selectivity targets. Journal of Membrane Science, 2016, 520: 221–230
https://doi.org/10.1016/j.memsci.2016.07.064
43 C A Scholes , G W Stevens , S E Kentish . Membrane gas separation applications in natural gas processing. Fuel, 2012, 96: 15–28
https://doi.org/10.1016/j.fuel.2011.12.074
44 C A Scholes , U K Ghosh . Review of membranes for helium separation and purification. Membranes, 2017, 7(1): 9
https://doi.org/10.3390/membranes7010009
45 N V Babkina , L F Kosyanchuk , T T Todosiichuk , N V Kozak , G Y Menzheres , G M Nesterenko . Structural changes in blends of linear polymers during their physical aging. Polymer Science Series A, 2012, 54(2): 125–134
https://doi.org/10.1134/S0965545X12020010
46 C L Staiger , S J Pas , A J Hill , C J Cornelius . Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer. Chemistry of Materials, 2008, 20(8): 2606–2608
https://doi.org/10.1021/cm071722t
47 J H Kim , W J Koros , D R Paul . Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes: Part 2. With crosslinking. Journal of Membrane Science, 2006, 282(1–2): 32–43
https://doi.org/10.1016/j.memsci.2006.05.003
48 H Wang , T S Chung , D R Paul . Physical aging and plasticization of thick and thin films of the thermally rearranged ortho-functional polyimide 6FDA-HAB. Journal of Membrane Science, 2014, 458: 27–35
https://doi.org/10.1016/j.memsci.2014.01.066
49 T E Rufford , K I Chan , S H Huang , E F May . A review of conventional and emerging process technologies for the recovery of helium from natural gas. Adsorption Science and Technology, 2014, 32(1): 49–72
https://doi.org/10.1260/0263-6174.32.1.49
[1] FCE-23084-OF-LY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed