Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (4): 45   https://doi.org/10.1007/s11705-024-2406-4
  本期目录
Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene
Junjie Li1, Chuang Liu1, Zhenlong Jia1, Yingchun Ye1, Dawei Lan1, Wei Meng1, Jianqiang Wang1, Zhendong Wang1, Yongfeng Hu1(), Weimin Yang1,2()
1. State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208, China
2. School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(6589 KB)   HTML
Abstract

Bifunctional metal/zeolite materials are some of the most suitable catalysts for the direct hydroalkylation of benzene to cyclohexylbenzene. The overall catalytic performance of this reaction is strongly influenced by the hydrogenation, which is dependent on the metal sizes. Thus, systematically investigating the metal size effects in the hydroalkylation of benzene is essential. In this work, we successfully synthesized Ru and Pd nanoparticles on Sinopec Composition Materials No.1 zeolite with various metal sizes. We demonstrated the size-dependent catalytic activity of zeolite-supported Ru and Pd catalysts in the hydroalkylation of benzene, which can be attributed to the size-induced hydrogen spillover capability differences. Our work presents new insights into the hydroalkylation reaction and may open up a new avenue for the smart design of advanced metal/zeolite bi-functional catalysts.

Key wordssize effects    bifunctional catalysts    metal/zeolite    hydroalkylation
收稿日期: 2023-10-16      出版日期: 2024-03-20
Corresponding Author(s): Yongfeng Hu,Weimin Yang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(4): 45.
Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang. Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene. Front. Chem. Sci. Eng., 2024, 18(4): 45.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2406-4
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I4/45
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 R Molinari , T Poerio . Remarks on studies for direct production of phenol in conventional and membrane reactors. Asia-Pacific Journal of Chemical Engineering, 2010, 5(1): 191–206
https://doi.org/10.1002/apj.369
2 G A Martin , J A Dalmon . Benzene hydrogenation over nickel catalysts at low and high temperatures: structure-sensitivity and copper alloying effects. Journal of Catalysis, 1982, 75(2): 233–242
https://doi.org/10.1016/0021-9517(82)90205-6
3 K Sato , S Hamakawa , M Natsui , M Nishioka , T Inoue , F Mizukami . Palladium-based bifunctional membrane reactor for one-step conversion of benzene to phenol and cyclohexanone. Catalysis Today, 2010, 156(3–4): 276–281
https://doi.org/10.1016/j.cattod.2010.04.045
4 L Lu , Z Rong , W Du , S Ma , S Hu . Selective hydrogenation of single benzene ring in biphenyl catalyzed by skeletal Ni. ChemCatChem, 2009, 1(3): 369–371
https://doi.org/10.1002/cctc.200900141
5 V N Ipatieff , B B Corson , H Pines . Influence of sulfuric acid concentration upon reaction between olefins and benzene. Journal of the American Chemical Society, 1936, 58(6): 919–922
https://doi.org/10.1021/ja01297a021
6 N Hiyoshi , C V Rode , O Sato , M Shirai . Biphenyl hydrogenation over supported transition metal catalysts under supercritical carbon dioxide solvent. Applied Catalysis A: General, 2005, 288(1–2): 43–47
https://doi.org/10.1016/j.apcata.2005.04.021
7 Y Zhang , Y Yang , Q Hou , E Xu , L Wang , F Li , M Wei . Metal-acid bifunctional catalysts toward tandem reaction: one-step hydroalkylation of benzene to cyclohexylbenzene. ACS Applied Materials & Interfaces, 2022, 14(28): 31998–32008
https://doi.org/10.1021/acsami.2c07074
8 J Huang , Z Li , J Yang , Z Peng , Q Liu , Z Liu . Identification of metal/acid matching balance over bifunctional Pd/Hβ toward benzene hydroalkylation. Industrial & Engineering Chemistry Research, 2021, 60(5): 2326–2336
https://doi.org/10.1021/acs.iecr.0c05438
9 F Meng , L Dong , W Meng , Y Ding , J Qiu . High efficiency catalyst of modified Y molecular sieve by rare earth La3+ catalyzed the synthesis of cyclohexylbenzene from benzene and cyclohexene. Catalysis Letters, 2021, 152: 745–754
10 Z Q Li , X Fu , C Gao , J Huang , B Li , Y Yang , J Gao , Y Shen , Z Peng , J H Yang . et al.. Enhancing the matching of acid/metal balance by engineering an extra Si–Al framework outside the Pd/HBeta catalyst towards benzene hydroalkylation. Catalysis Science & Technology, 2020, 10(5): 1467–1476
https://doi.org/10.1039/C9CY02438G
11 S A Kishore Kumar , M John , S M Pai , S Ghosh , B L Newalkar , K K Pant . Selective hydroalkylation of benzene over palladium supported Y-Zeolite: effect of metal acid balance. Molecular Catalysis, 2017, 442: 27–38
https://doi.org/10.1016/j.mcat.2017.08.021
12 J Qiu , K Komura , Y Kubota , Y Sugi . Synthesis of cyclohexylbenzene by hydroalkylation of benzene over Pd/Hβ binary catalyst. Chinese Journal of Catalysis, 2007, 28(3): 246–250
https://doi.org/10.1016/S1872-2067(07)60022-9
13 J Fahy , D L Trimm , D J Cookson . Four component catalysis for the hydroalkylation of benzene. Applied Catalysis A: General, 2001, 211(2): 259–268
https://doi.org/10.1016/S0926-860X(00)00872-3
14 J Shi , Y Wang , W Yang , Y Tang , Z Xie . Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903
https://doi.org/10.1039/C5CS00626K
15 H Sun , Z Chen , C Li , L Chen , Y Li , Z Peng , Z Liu , S Liu . Selective hydrogenation of benzene to cyclohexene over monometallic Ru catalysts: investigation of ZnO and ZnSO4 as reaction additives as well as particle size effect. Catalysts, 2018, 8(5): 172
https://doi.org/10.3390/catal8050172
16 L Foppa , J Dupont . Benzene partial hydrogenation: advances and perspectives. Chemical Society Reviews, 2015, 44(7): 1886–1897
https://doi.org/10.1039/C4CS00324A
17 G Zhou , Y Pei , Z Jiang , K Fan , M Qiao , B Sun , B Zong . Doping effects of B in ZrO2 on structural and catalytic properties of Ru/B-ZrO2 catalysts for benzene partial hydrogenation. Journal of Catalysis, 2014, 311: 393–403
https://doi.org/10.1016/j.jcat.2013.12.022
18 G Vilé , D Albani , N Almora-Barrios , N López , J Pérez-Ramírez . Advances in the design of nanostructured catalysts for selective hydrogenation. ChemCatChem, 2016, 8(1): 21–33
https://doi.org/10.1002/cctc.201501269
19 S Scirè , R Fiorenza , A Gulino , A Cristaldi , P M Riccobene . Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: an investigation on the role of the support and the Ru particle size. Applied Catalysis A: General, 2016, 520: 82–91
https://doi.org/10.1016/j.apcata.2016.04.011
20 M Navlani-García , K Mori , A Nozaki , Y Kuwahara , H Yamashita . Investigation of size sensitivity in the hydrogen production from formic acid over carbon-supported Pd nanoparticles. ChemistrySelect, 2016, 1(9): 1879–1886
https://doi.org/10.1002/slct.201600559
21 P S Campbell , C C Santini , F Bayard , Y Chauvin , V Collière , A Podgoršek , Gomes M F Costa , J Sá . Olefin hydrogenation by ruthenium nanoparticles in ionic liquid media: does size matter?. Journal of Catalysis, 2010, 275(1): 99–107
https://doi.org/10.1016/j.jcat.2010.07.018
22 A J Plomp , H Vuori , A O I Krause , K P de Jong , J H Bitter . Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2008, 351(1): 9–15
https://doi.org/10.1016/j.apcata.2008.08.018
23 X Zhang , Q Gu , Y Ma , Q Guan , R Jin , H Wang , B Yang , J Lu . Support-induced unusual size dependence of Pd catalysts in chemoselective hydrogenation of para-chloronitrobenzene. Journal of Catalysis, 2021, 400: 173–183
https://doi.org/10.1016/j.jcat.2021.06.002
24 Z Wang , M O Cichocka , Y Luo , B Zhang , H Sun , Y Tang , W Yang . Controllable direct-syntheses of delaminated MWW-type zeolites. Chinese Journal of Catalysis, 2020, 41(7): 1062–1066
https://doi.org/10.1016/S1872-2067(20)63545-8
25 X Li , X Yuan , G Xia , J Liang , C Liu , Y Qin , Z Wang , W Yang . Postsynthesis of delaminated MWW-type stannosilicate as a robust catalyst for sugar conversion to methyl lactate. Industrial & Engineering Chemistry Research, 2021, 60(22): 8027–8034
https://doi.org/10.1021/acs.iecr.1c00471
26 X Li , X Yuan , G Xia , J Liang , C Liu , Z Wang , W Yang . Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. Journal of Catalysis, 2020, 392: 175–185
https://doi.org/10.1016/j.jcat.2020.10.004
27 J Lu , J W Elam , P C Stair . Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surface Science Reports, 2016, 71(2): 410–472
https://doi.org/10.1016/j.surfrep.2016.03.003
28 T Gong , Y Huang , L Qin , W Zhang , J Li , L Hui , H Feng . Atomic layer deposited palladium nanoparticle catalysts supported on titanium dioxide modified MCM-41 for selective hydrogenation of acetylene. Applied Surface Science, 2019, 495: 143495
https://doi.org/10.1016/j.apsusc.2019.07.237
29 H Wang , Y Lin , J Lu . Ultra-thin nickel oxide overcoating of noble metal catalysts for directing selective hydrogenation of nitriles to secondary amines. Catalysis Today, 2023, 410: 253–263
https://doi.org/10.1016/j.cattod.2022.05.017
30 Y Song , M Zhang , G Fan , L Yang , F Li . Combining a supported Ru catalyst with HBeta zeolite to construct a high-performance bifunctional catalyst for one-step cascade transformation of benzene to cyclohexylbenzene. Industrial & Engineering Chemistry Research, 2022, 61(51): 18663–18675
https://doi.org/10.1021/acs.iecr.2c03140
31 K Murakami , Y Sekine . Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22(40): 22852–22863
https://doi.org/10.1039/D0CP04139D
32 W Karim , C Spreafico , A Kleibert , J Gobrecht , J VandeVondele , Y Ekinci , J A van Bokhoven . Catalyst support effects on hydrogen spillover. Nature, 2017, 541(7635): 68–71
https://doi.org/10.1038/nature20782
33 H Zou , J Dai , J Suo , R Ettelaie , Y Li , N Xue , R Wang , H Yang . Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nature Communications, 2021, 12(1): 4968
https://doi.org/10.1038/s41467-021-25226-x
34 M Xiong , Z Gao , P Zhao , G Wang , W Yan , S Xing , P Wang , J Ma , Z Jiang , X Liu . et al.. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nature Communications, 2020, 11(1): 4773
https://doi.org/10.1038/s41467-020-18567-6
35 R Prins . Hydrogen spillover. Facts and fiction. Chemical Reviews, 2012, 112(5): 2714–2738
https://doi.org/10.1021/cr200346z
36 M Xiong , Z Gao , Y Qin . Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catalysis, 2021, 11(5): 3159–3172
https://doi.org/10.1021/acscatal.0c05567
37 Y Ma , X Zhang , L Cao , J Lu . Effects of the morphology and heteroatom doping of CeO2 support on the hydrogenation activity of Pt single-atoms. Catalysis Science & Technology, 2021, 11(8): 2844–2851
https://doi.org/10.1039/D0CY02279A
[1] FCE-23085-OF-LJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed