Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (11): 122   https://doi.org/10.1007/s11705-024-2473-6
  本期目录
Efficient visible light photodegradation of BiVO4:Yb3+/Tm3+ with high content of tetragonal phase
Han Xie, Mitang Wang(), Zhigao Sun, Xiaoyu Lu, Dongliang Zhang, Siqingaowa Jin, Siheng Chen
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
 全文: PDF(1747 KB)   HTML
Abstract

In photocatalytic studies, tetragonal bismuth vanadate (t-BiVO4) is not promising due to its wide band gap. However, according to previous studies, the tetragonal phase is inevitable when the monoclinic bismuth vanadate (m-BiVO4) is modified. Therefore, it is necessary to find ways to improve the photoresponse and photocatalytic ability of t-BiVO4 under visible light. In this study, Yb3+ and Tm3+ co-doped BiVO4 was synthesized by a simple hydrothermal method, and its microstructure, morphology and optical properties were characterized and analyzed by scanning electron microscope, transmission electron microscopy, Brunauer-Emmett-Teller, X-ray diffraction, Raman, X-ray photoelectron spectroscopy, diffuse reflectance spectra, photoluminescence, upconversion luminescence and other means. The results show that BiVO4:Yb3+/Tm3+ (BVYT) has a high content of tetragonal phase (about 80%), showing the characteristics of t-BiVO4. BVYT shows a higher separation efficiency of photogenerated carriers, its transient photocurrent response intensity increased by about 3 times, and the photocatalytic efficiency is significantly improved compare with the undoped m-BiVO4. Under simulated sunlight, BVYT completely degraded methylene blue (MB) solution and rhodamine B solution in 45 and 90 min, respectively, and the reaction rate was significantly improved. BVYT also shows excellent photocatalytic ability under visible light, about 35% of MB solution was degraded within 45 min under visible light irradiation (> 420 nm), this is because Yb3+ effectively promotes the upconversion luminescence of Tm3+ in response to visible light, and the energy cycle mechanism of Yb-Tm-Tm is proposed. Consequently, BiVO4 with high content of tetragonal phase has excellent photoactivity, even exceeding m-BiVO4. This is a novel discovery in the field of photocatalysis, which provides a broader application prospect for BiVO4 in photocatalysis.

Key wordsphotocatalysis    bismuth vanadate    rare earth    upconversion luminescence
收稿日期: 2024-03-13      出版日期: 2024-07-31
Corresponding Author(s): Mitang Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(11): 122.
Han Xie, Mitang Wang, Zhigao Sun, Xiaoyu Lu, Dongliang Zhang, Siqingaowa Jin, Siheng Chen. Efficient visible light photodegradation of BiVO4:Yb3+/Tm3+ with high content of tetragonal phase. Front. Chem. Sci. Eng., 2024, 18(11): 122.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2473-6
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I11/122
Fig.1  
SamplesCrystallite size/nmPhase compositionEg/eVDegradation rate (MB)k/min–1(MB)
Monoclinic/%Tetragonal/%
BVO58.199.10.92.4685.6 %0.0363
BVT-0.247.710002.4791.0 %0.0453
BVT-0.445.485.214.82.4495.6 %0.0639
BVT-0.654.086.413.62.4591.5 %0.0506
BVYT-238.522.777.32.9095.7 %0.0658
BVYT-334.121.278.82.92100 %0.1022
BVYT-433.318.581.52.9298.0 %0.0828
BVYT-529.120.579.52.9190.9 %0.0513
Tab.1  
Fig.2  
Fig.3  
Fig.4  
SamplesSBET/ (m2·g–1)Pore volume/ (cm3·g–1)Average pore diameter/nmMaximum pore volume/(cm3·g–1)
BVO2.20220.0024274.408800.000971
BVT-0.23.32530.0035004.210010.001400
BVT-0.42.73180.0029884.374710.001195
BVT-0.64.22140.0052845.006630.001626
BVYT-25.32240.0074715.615070.002123
BVYT-37.95550.0113315.697070.003059
BVYT-48.90740.0132475.948780.003330
BVYT-57.68120.0107285.586600.002957
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Photocatalyst (weight)Degradation ratePollutantsLight sourceRef.
Yb-Tm/BiVO4 (60 mg)100% in 45 min10 mg·L–1 MB (70 mL)300 W Xe lampThis work
Yb-Tm/BiVO4 (50 mg)100% in 90 min10 mg·L–1 RhB (50 mL)300 W Xe lampThis work
Eu/BiVO4 (50 mg)90.1% in 90 min10 mg·L–1 MB (35 mL)300 W Xe lamp[39]
Eu-F/BiVO4 (50 mg)92% in 90 min10 mg·L–1 MB (40 mL)300 W Xe lamp[46]
Nd-Er/BiVO4 (50 mg)96.2% in 150 min10 mg·L–1 RhB (50 mL)500 W Xe lamp[15]
Yb/BiVO4 (50 mg)98% in 120 min5 mg·L–1 RhB (50 mL)500 W Xe lamp[25]
BiPO4:Yb-Tm/BiVO4 (30 mg)98% in 100 min16 mg·L–1 RhB (30 mL)140 W Xe lamp[20]
Co/BiVO4 (100 mg)100% in 120 min10 mg·L–1 MB (100 mL)150 W Xe lamp[47]
Gd-Y/BiVO4 (100 mg)94% in 90 min10 mg·L–1 MB (100 mL)500 W Hg-Xe lamp[8]
Er-Y/BiVO4 (200 mg)100% in 120 min10 mg·L–1 MB (200 mL)200 W Xe lamp[48]
Tab.3  
Fig.10  
1 J Zhang , X Wei , J Zhao , Y Zhang , L Wang , J Huang , H She , Q Wang . Electronegative Cl– modified BiVO4 photoanode synergized with nickel hydroxide cocatalyst for high-performance photoelectrochemical water splitting. Chemical Engineering Journal, 2023, 454: 140081
https://doi.org/10.1016/j.cej.2022.140081
2 C Hua , X Liu , S Ren , C Zhang , W Liu . Preparation of visible light-responsive photocatalytic paper containing BiVO4@diatomite/MCC/PVBCFs for degradation of organic pollutants. Ecotoxicology and Environmental Safety, 2020, 202: 110897
https://doi.org/10.1016/j.ecoenv.2020.110897
3 S ObregónG Colón. Excellent photocatalytic activity of Yb3+, Er3+ co-doped BiVO4 photocatalyst. Applied Catalysis B: Environmental, 2014, 152–153: 328–334
4 W J Jo , H J Kang , K J Kong , Y S Lee , H Park , Y Lee , T Buonassisi , K K Gleason , J S Lee . Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(45): 13774–13778
https://doi.org/10.1073/pnas.1509674112
5 S Bakhtiarnia , S Sheibani , A Nadi , E Aubry , H Sun , P Briois , M A P Yazdi . Preparation of sputter-deposited Cu-doped BiVO4 nanoporous thin films comprised of amorphous/crystalline heterostructure as enhanced visible-light photocatalyst. Applied Surface Science, 2023, 608: 155248
https://doi.org/10.1016/j.apsusc.2022.155248
6 J Liu , L Qiu , M J Chang , B Yuan , M Sun , S M Fan , W N Cui , Q Hui , F R Ni , M Y Li . et al.. Fabrication of novel fibrous BiVO4/CdS heterostructures by electrospinning method for efficient visible light photodegradation. Materials Chemistry and Physics, 2020, 247: 122858
https://doi.org/10.1016/j.matchemphys.2020.122858
7 Y LiX XiaoZ Ye. Fabrication of BiVO4/RGO/Ag3PO4 ternary composite photocatalysts with enhanced photocatalytic performance. Applied Surface Science, 2019, 467–468: 902–911
8 M Noor , F Sharmin , M A A Mamun , S Hasan , M A Hakim , M A Basith . Effect of Gd and Y co-doping in BiVO4 photocatalyst for enhanced degradation of methylene blue dye. Journal of Alloys and Compounds, 2022, 895: 162639
https://doi.org/10.1016/j.jallcom.2021.162639
9 W Su , M Zheng , L Li , K Wang , R Qiao , Y Zhong , Y Hu , Z Li . Directly coat TiO2 on hydrophobic NaYF4:Yb,Tm nanoplates and regulate their photocatalytic activities with the core size. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(33): 13486–13491
https://doi.org/10.1039/C4TA02756F
10 Y Li , Z Cheng , L Yao , S Yang , Y Zhang . Boosting NIR-driven photocatalytic activity of BiOBr:Yb3+/Er3+/Ho3+ nanosheets by enhanced green upconversion emissions via energy transfer from Er3+ to Ho3+ ions. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 18185–18196
https://doi.org/10.1021/acssuschemeng.9b05878
11 J Yang , J Liu , F Shi , S Ran , S Liu . Tm, Yb co-doped urchin-like CsxWO3 nanoclusters with dual functional properties: transparent heat insulation performance and enhanced photocatalysis. Ceramics International, 2021, 47(6): 8345–8356
https://doi.org/10.1016/j.ceramint.2020.11.197
12 B Cao , S Gong , S M Zubairu , L Liu , Y Xu , L Guo , R Dang , G Zhu . Fabrication of Er3+/Yb3+ co-doped Bi5O7I microsphere with upconversion luminescence and enhanced photocatalytic activity for bisphenol A degradation. Frontiers in Chemistry, 2020, 8: 773
https://doi.org/10.3389/fchem.2020.00773
13 P Padhye , P Poddar . Static and dynamic photoluminescence and photocatalytic properties of uniform, monodispersed up/down-converting, highly luminescent, lanthanide-ion-doped β-NaYF4 phosphor microcrystals with controlled multiform morphologies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(45): 19189–19200
https://doi.org/10.1039/C4TA04274C
14 X Li , W Li , X Liu , L Geng , H Fan , A Khan , X Ma , M Dong , H Qiu . The construction of Yb/Er/Pr triple-doped Bi2WO6 superior photocatalyst and the regulation of superoxide and hydroxyl radicals. Applied Surface Science, 2022, 592: 153311
https://doi.org/10.1016/j.apsusc.2022.153311
15 T Liu , G Tan , C Zhao , C Xu , Y Su , Y Wang , H Ren , A Xia , D Shao , S Yan . Enhanced photocatalytic mechanism of the Nd-Er co-doped tetragonal BiVO4 photocatalysts. Applied Catalysis B: Environmental, 2017, 213: 87–96
https://doi.org/10.1016/j.apcatb.2017.05.018
16 H Huang , Z Wang , B Huang , P Wang , X Zhang , X Qin , Y Dai , G Zhou , M H Whangbo . Intense single red emission induced by near-infrared irradiation using a narrow bandgap oxide BiVO4 as the host for Yb3+ and Tm3+ ions. Advanced Optical Materials, 2018, 6(15): 1701331
https://doi.org/10.1002/adom.201701331
17 S Huang , N Zhu , Z Lou , L Gu , C Miao , H Yuan , A Shan . Near-infrared photocatalysts of BiVO4/CaF2:Er3+, Tm3+, Yb3+ with enhanced upconversion properties. Nanoscale, 2014, 6(3): 1362–1368
https://doi.org/10.1039/C3NR05266D
18 Z Nie , X Ke , D Li , Y Zhao , L Zhu , R Qiao , X L Zhang . NaYF4:Yb,Er,Nd@NaYF4: Nd upconversion nanocrystals capped with Mn:TiO2 for 808 nm NIR-triggered photocatalytic applications. Journal of Physical Chemistry C, 2019, 123(37): 22959–22970
https://doi.org/10.1021/acs.jpcc.9b05234
19 S Obregón , G Colón . On the origin of the photocatalytic activity improvement of BiVO4 through rare earth tridoping. Applied Catalysis A, General, 2015, 501: 56–62
https://doi.org/10.1016/j.apcata.2015.04.032
20 S Ganguli , C Hazra , M Chatti , T Samanta , V Mahalingam . A highly efficient UV-Vis-NIR active Ln3+-doped BiPO4/BiVO4 nanocomposite for photocatalysis application. Langmuir, 2016, 32(1): 247–253
https://doi.org/10.1021/acs.langmuir.5b03289
21 S Bai , Q Li , N Han , K Zhang , P Tang , Y Feng , R Luo , D Li , A Chen . Synthesis of novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties. Journal of Colloid and Interface Science, 2020, 567: 37–44
https://doi.org/10.1016/j.jcis.2020.01.104
22 L Shan , Y Liu . Er3+, Yb3+ doping induced core-shell structured BiVO4 and near-infrared photocatalytic properties. Journal of Molecular Catalysis A Chemical, 2016, 416: 1–9
https://doi.org/10.1016/j.molcata.2016.02.013
23 H Tian , H Wu , Y Fang , R Li , Y Huang . Hydrothermal synthesis of m-BiVO4/t-BiVO4 heterostructure for organic pollutants degradation: insight into the photocatalytic mechanism of exposed facets from crystalline phase controlling. Journal of Hazardous Materials, 2020, 399: 123159
https://doi.org/10.1016/j.jhazmat.2020.123159
24 C Regmi , Y K Kshetri , S K Ray , R P Pandey , S W Lee . Utilization of visible to NIR light energy by Yb3+, Er3+ and Tm3+ doped BiVO4 for the photocatalytic degradation of methylene blue. Applied Surface Science, 2017, 392: 61–70
https://doi.org/10.1016/j.apsusc.2016.09.024
25 J Huang , G Tan , L Zhang , H Ren , A Xia , C Zhao . Enhanced photocatalytic activity of tetragonal BiVO4: influenced by rare earth ion Yb3+. Materials Letters, 2014, 133: 20–23
https://doi.org/10.1016/j.matlet.2014.06.123
26 M Guo , H Xiang , S Tang , X Guo , Y Yang , X Zhang . Effect of pyrolysis temperature on structure and photocatalytic properties of biochar-coupled BiVO4. Journal of Environmental Chemical Engineering, 2022, 10(2): 107255
https://doi.org/10.1016/j.jece.2022.107255
27 S Fang , S Xue , C Wang , G Wang , X Wang , Q Liang , Z Li , S Xu . Fabrication and characterization of CdS/BiVO4 nanocomposites with efficient visible light driven photocatalytic activities. Ceramics International, 2016, 42(3): 4421–4428
https://doi.org/10.1016/j.ceramint.2015.11.126
28 S Ullah , E P Ferreira Neto , C Hazra , R Parveen , H D Rojas Mantilla , M L Calegaro , Y E Serge Correales , U P Rodrigues Filho , S J L Ribeiro . Broad spectrum photocatalytic system based on BiVO4 and NaYbF4:Tm3+ upconversion particles for environmental remediation under UV-Vis-NIR illumination. Applied Catalysis B: Environmental, 2019, 243: 121–135
https://doi.org/10.1016/j.apcatb.2018.09.091
29 Q Dong , F Yang , F Liang , Y Zhang , D Xia , W Zhao , L Wu , X Liu , Z Jiang , C Sun . Silver particle on BiVO4 nanosheet plasmonic photocatalyst with enhanced photocatalytic oxidation activity of sulfadiazine. Journal of Molecular Liquids, 2021, 331: 115751
https://doi.org/10.1016/j.molliq.2021.115751
30 S Ye , Y Xu , L Huang , W Lai , L Deng , Z Lin , H Peng , X Zhou , G Xie . MWCNT/BiVO4 photocatalyst for inactivation performance and mechanism of Shigella flexneri HL, antibiotic-resistant pathogen. Chemical Engineering Journal, 2021, 424: 130415
https://doi.org/10.1016/j.cej.2021.130415
31 H She , M Jiang , P Yue , J Huang , L Wang , J Li , G Zhu , Q Wang . Metal (Ni2+/Co2+) sulfides modified BiVO4 for effective improvement in photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2019, 549: 80–88
https://doi.org/10.1016/j.jcis.2019.04.038
32 Q Wang , J Li , L Xiao , Y Wang , H Du . Constructing Z-scheme Fe3N/BiVO4 heterojunction via electrostatic self-assembly toward high visible-light photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2023, 935: 168062
https://doi.org/10.1016/j.jallcom.2022.168062
33 F Liu , S Zhang , D Xu , F Sun , W Wang , X Li , W Yu , X Dong , G Liu , H Yu . Columnar cactus-like 2D/1D BiOBr/BiVO4:Yb3+, Er3+ heterostructure photocatalyst with ultraviolet-visible-near infrared response for photocatalytic degrading dyes, endocrine disruptors and antibiotics. Journal of Alloys and Compounds, 2022, 929: 167330
https://doi.org/10.1016/j.jallcom.2022.167330
34 J Fan , Y Chen , Z Long , L Tong , G He , Z Hu . Giant dielectric response and relaxation behavior in (Tm + Ta) co-doped TiO2 ceramics. Physical Chemistry Chemical Physics, 2022, 24(8): 4759–4768
https://doi.org/10.1039/D1CP05348E
35 J H Kim , S J Kim , C I Lee , M A Jung , H J Oh , J S Rhyee , Y Jo , H Mitani , H Miyazaki , S Kimura . et al.. Kondo-like behaviors in magnetic and thermal properties of single crystal Tm5Si2Ge2. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(10): 104401
https://doi.org/10.1103/PhysRevB.81.104401
36 Z Yu , R Liang , M Zhou , K Yang , P Mu , K Lu , W Huang , S Ouyang , Z Li , C Yu . Steering oxygen vacancies for the enhanced photocatalytic degradations of dyes and tetracycline over Cu, Yb co-doped SnO2 with efficient charge separation and transfer. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133: 104249
https://doi.org/10.1016/j.jtice.2022.104249
37 W Zhao , Y Liu , Z Wei , S Yang , H He , C Sun . Fabrication of a novel p-n heterojunction photocatalyst n-BiVO4@p-MoS2 with core-shell structure and its excellent visible-light photocatalytic reduction and oxidation activities. Applied Catalysis B: Environmental, 2016, 185: 242–252
https://doi.org/10.1016/j.apcatb.2015.12.023
38 C Ma , S T U Din , W C Seo , J Lee , Y Kim , H Jung , W Yang . BiVO4 ternary photocatalyst co-modified with N-doped graphene nanodots and Ag nanoparticles for improved photocatalytic oxidation: a significant enhancement in photoinduced carrier separation and broad-spectrum light absorption. Separation and Purification Technology, 2021, 264: 118423
https://doi.org/10.1016/j.seppur.2021.118423
39 W Zhang , H Zhang , W Huang , X Lu , S Gao , J Wang , D Zhang , X Zhang , M Wang . Structure, morphology and photocatalytic performance of europium-doped bismuth vanadate. Inorganic Chemistry Frontiers, 2022, 9(5): 977–986
https://doi.org/10.1039/D1QI01623G
40 J R Wang , L F Shen , S Yan , E Y B Pun , H Lin . A novel multifunctional BVO-T1Y8 porous nanofibers for multi-selective gas sensing and real-time temperature monitoring. Chemical Engineering Journal, 2022, 431: 134175
https://doi.org/10.1016/j.cej.2021.134175
41 H Ren , F Huang , J Jiang , L Wang , J Zhang . Development of photocatalyst based on NaYF4:Yb, Tm@NaYF4:Yb, Ce/NH2-MIL-101 (Cr): doping Ce3+ ions to promote the efficient energy transfer between core and shell. Chemical Engineering Journal, 2022, 427: 132023
https://doi.org/10.1016/j.cej.2021.132023
42 K Zhao , X Liu , Q He , W Zhou , K Yang , L Tao , F Li , C Yu . Preparation and characterization of Sm3+/Tm3+ co-doped BiVO4 micro-squares and their photocatalytic performance for CO2 reduction. Journal of the Taiwan Institute of Chemical Engineers, 2023, 144: 104737
https://doi.org/10.1016/j.jtice.2023.104737
43 S Yuan , J Wang , C Zhao , L Yue , X Ren , Z Zeng , X Hu , Y Wu , Y He . S-scheme Bi2O3/CdMoO4 hybrid with highly efficient charge separation for photocatalytic N2 fixation and tetracycline degradation: fabrication, catalytic optimization, physicochemical studies. Separation and Purification Technology, 2023, 325: 124665
https://doi.org/10.1016/j.seppur.2023.124665
44 C Zhao , X Li , L Yue , S Yuan , X Ren , Z Zeng , X Hu , Y Wu , Y He . One-step preparation of novel Bi-Bi2O3/CdWO4 Z-scheme heterojunctions with enhanced performance in photocatalytic NH3 synthesis. Journal of Alloys and Compounds, 2023, 968: 171956
https://doi.org/10.1016/j.jallcom.2023.171956
45 C Zhao , X Li , L Yue , X Ren , S Yuan , Z Zeng , X Hu , Y Wu , Y He . Bi4O5Br2 nanoflower and CdWO4 nanorod heterojunctions for photocatalytic synthesis of ammonia. ACS Applied Nano Materials, 2023, 6(17): 15709–15720
https://doi.org/10.1021/acsanm.3c02504
46 H Xie , W Zhang , S Gao , J Wang , D Zhang , M Wang . Structure, morphology and photocatalytic performance of europium and fluorine co-doped bismuth vanadate. New Journal of Chemistry, 2022, 46(42): 20269–20278
https://doi.org/10.1039/D2NJ03655J
47 B Zhou , X Zhao , H Liu , J Qu , C P Huang . Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental, 2010, 99(1–2): 214–221
https://doi.org/10.1016/j.apcatb.2010.06.022
48 S Obregón , G Colón . Improved O2 evolution from a water splitting reaction over Er3+ and Y3+ co-doped tetragonal BiVO4. Catalysis Science & Technology, 2014, 4(7): 2042–2050
https://doi.org/10.1039/C4CY00050A
49 S DongJ FengY LiL HuM LiuY WangY PiJ SunJ Sun. Shape-controlled synthesis of BiVO4 hierarchical structures with unique natural-sunlight-driven photocatalytic activity. Applied Catalysis B: Environmental, 2014, 152–153: 413–424
50 C Zhao , X Li , L Yue , X Ren , S Yuan , Z Zeng , Y He . Fabrication of novel BiPO4/Bi4O5Br2 heterojunctions for improving photoactivity in N2 fixation and dye degradation. Materials Research Bulletin, 2023, 167: 112377
https://doi.org/10.1016/j.materresbull.2023.112377
[1] FCE-24026-OF-XH_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed