Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

   优先出版

合作单位

2024年, 第18卷 第11期 出版日期:2024-11-15

选择: 合并摘要 显示/隐藏图片
Plastic upgrading via catalytic pyrolysis with combined metal-modified gallium-based HZSM-5 and MCM-41
Huaping Lin, Likai Zhu, Ye Liu, Vasilevich Sergey Vladimirovich, Bilainu Oboirien, Yefeng Zhou
Frontiers of Chemical Science and Engineering. 2024, 18 (11): 125-.  
https://doi.org/10.1007/s11705-024-2476-3

摘要   HTML   PDF (1355KB)

Currently, the conversion of waste plastics into high-value products via catalytic pyrolysis enables the advancement of plastics’ open-loop recycling. However, enhancing selectivity remains a critical challenge. This study introduces a novel approach to catalytic pyrolysis, utilizing a combination of MCM-41 and modified gallium-based HZSM-5 catalysts, to achieve exceptional selectivity for aromatic liquid-phase products from linear low-density polyethylene. Firstly, to enhance the probability of dehydroaromatization optimization, the type and proportion of metal active sites within the HZSM-5 catalyst are fine-tuned, which would establish equilibrium with acid sites, resulting in a remarkable 15.72% increase in the selectivity of aromatic hydrocarbons. Secondly, to enhance the accessibility of volatiles to active sites, mesoporous MCM-41 with cracking capabilities is introduced. The doping ratio of MCM-41 is meticulously controlled to facilitate the diffusion of cracked volatiles to the active centers of modified gallium-based HZSM-5, enabling efficient reforming reactions. Experimental findings demonstrate that MCM-41 significantly enhances the dehydroaromatization activity of the modified gallium-based HZSM-5 catalyst. Under the influence of MCM-41:Zr2Ga3/HZSM-5 = 1:2 catalyst, the selectivity for aromatic hydrocarbons reaches an impressive 93.11%, with a notable 60.01% selectivity for benzene, toluene, ethylbenzene, and xylene. Lastly, this study proposes a plausible pathway for the generation of high-value aromatic hydrocarbons using the combined catalyst.

图表 | 参考文献 | 相关文章 | 多维度评价
Amine-functionalized metal-organic frameworks loaded with Ag nanoparticles for cycloaddition of CO2 to epoxides
Huiyu Fu, Jiewen Wu, Changhai Liang, Xiao Chen
Frontiers of Chemical Science and Engineering. 2024, 18 (11): 126-.  
https://doi.org/10.1007/s11705-024-2477-2

摘要   HTML   PDF (1228KB)

With the advantages of low raw material cost and 100% atom utilization, the synthesis of high value-added chemical product cyclic carbonates by the cycloaddition of CO2 to epoxides has become one of the most prospective approaches to achieve the industrial utilization of CO2. In the reported catalytic systems, the complexity of the catalyst synthesis process, high cost, separation difficulties, and low CO2 capture limit the catalytic efficiency and its large-scale application. In this paper, Ag nanoparticles loaded on polyethyleneimine (PEI)-modified UiO-66-NH2 (Ag/PEI@UiO-66-NH2) are successfully synthesized by in situ immersion reduction. The Ag nanoparticles and the amino groups on the surfaces of PEI@UiO-66-NH2 contribute to the adsorption of CO2 and polarization of C–O bonds in epoxides, thereby boosting the conversion capability for the CO2 cycloaddition reaction. At the amount of propylene oxide of 0.25 mol and the catalyst dosage of 1% of the substrate, the yield and selectivity of propylene carbonate are up to 99%. In addition, the stability and recyclability of Ag/PEI@UiO-66-NH2 catalyst are attained. The Ag/PEI@UiO-66-NH2 catalyst also demonstrates a wide range of activity and distinctive selectivity toward cyclo-carbonates in the cycloaddition of CO2 to epoxides. This work provides a guide to designing a highly efficient catalyst for in situ capture and high-value utilization of CO2 in industrial applications.

图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
Highly dispersed Pd nanoparticles in situ reduced and stabilized by nitrogen-alkali lignin-doped phenolic nanospheres and their application in vanillin hydrodeoxygenation
Xue Gu, Yu Qin, Jiahui Wei, Bing Yuan, Fengli Yu, Liantao Xin, Congxia Xie, Shitao Yu
Frontiers of Chemical Science and Engineering. 2024, 18 (11): 127-.  
https://doi.org/10.1007/s11705-024-2478-1

摘要   HTML   PDF (1384KB)

Herein, we introduced a nitrogen-alkali lignin-doped phenolic resin (N@ALnPR) to produce palladium nanoparticles through an in situ reduction of palladium in an aqueous phase, without the need for additional reagents or a reducing atmosphere. The phenolic resin nanospheres and the resulting palladium nanoparticles were extensively characterized. Alkali lignin created a highly conducive environment for nitrogen incorporation, dispersion, reduction, and stabilization of palladium, leading to a distinct catalytic performance of palladium nanoparticles in vanillin hydrodeoxygenation. Under specific conditions of 1 mmol of vanillin, 40 mg of catalyst, 1 MPa H2, 90 °C, and 3 h, the optimized Pd/N@AL30PR catalyst exhibited a nearly complete conversion of vanillin, 98.9% selectivity toward p-creosol, and good stability for multiple reuses. Consequently, an environmentally friendly lignin-based catalyst was developed and used for the efficient hydrodeoxygenation conversion of lignin-based platform compounds.

图表 | 参考文献 | 相关文章 | 多维度评价
Extractive distillation of cycloalkane monomers from the direct coal liquefaction fraction
Shuo-Shuo Zhang, Xing-Bao Wang, Wen-Ying Li
Frontiers of Chemical Science and Engineering. 2024, 18 (11): 130-.  
https://doi.org/10.1007/s11705-024-2482-5

摘要   HTML   PDF (1094KB)

Separating monomeric cycloalkanes from naphtha obtained from direct coal liquefaction not only facilitates the valuable utilization of naphtha but also holds potential for addressing China’s domestic chemical feedstock market demand for these compounds. In extractive distillation processes of naphtha, relative volatility serves as a crucial parameter for extractant selection. However, determining relative volatility through conventional vapor-liquid equilibrium experiments for extractant selection proves challenging due to the complexity of naphtha’s compound composition. To address this challenge, a prediction model for the relative volatility of n-heptane/methylcyclohexane in various extractants has been developed using machine-learning quantitative structure-property relationship methods. The model enables rapid and cost-effective extractant selection. The statistical analysis of the model revealed favorable performance indicators, including a coefficient of determination of 0.88, cross-validation coefficient of 0.94, and root mean square error of 0.02. Factors such as α, EHOMO, ρ, and logPoct/water collectively influence relative volatility. Analysis of standardized coefficients in the multivariate linear regression equation identified density as the primary factor affecting the relative volatility of n-heptane/methylcyclohexane in the different extractants. Extractants with higher densities, devoid of branched chains, exhibited increased relative volatility compared to their counterparts with branched chains. Subsequently, the process of separating cycloalkane monomers from direct coal liquefaction products via extractive distillation was optimized using Aspen Plus software, achieving purities exceeding 0.99 and yields exceeding 0.90 for cyclohexane and methylcyclohexane monomers. Economic, energy consumption, and environmental assessments were conducted. Salicylic acid emerged as the most suitable extractant for purifying cycloalkanes in direct coal liquefaction naphtha due to its superior separation effectiveness, cost efficiency, and environmental benefits. The tower parameters of the simulated separation unit provide valuable insights for the design of actual industrial equipment.

图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
Synergistic effect of Fe-Mn bimetallic sites with close proximity for enhanced CO2 hydrogenation performance
Haoting Liang, Qiao Zhao, Shengkun Liu, Chongyang Wei, Yidan Wang, Yue Wang, Shouying Huang, Xinbin Ma
Frontiers of Chemical Science and Engineering. 2024, 18 (11): 140-.  
https://doi.org/10.1007/s11705-024-2491-4

摘要   HTML   PDF (1197KB)

The Fe-Mn bimetallic catalyst is a potential candidate for the conversion of CO2 into value-added chemicals. The interaction between the two metals plays a significant role in determining the catalytic performance, however which remains controversial. In this study, we aim to investigate the impact of tuning the proximity of Fe-Mn bimetallic catalysts with similar nanoparticle size. And its effect on the physicochemical properties of the catalysts and corresponding performance were investigated. It was found that closer Fe-Mn proximity resulted in enhanced CO2 hydrogenation activity and inhibited CH4 formation. The physiochemical properties of prepared catalysts were characterized using X-ray diffraction, H2 temperature programmed reduction, and X-ray photoelectron spectroscopy, revealing that a closer Fe-Mn distance promoted electron transfer from Mn to Fe, thereby facilitating Fe carburization. The adsorption behavior of CO2 and the identification of reaction intermediates were analyzed using CO2-temperature programed desorption and in situ Fourier transform infrared spectroscopy, confirming the intimate Fe-Mn sites contributed to CO2 adsorption and the formation of HCOO* species, ultimately leading to increased CO2 conversion and hydrocarbon production. The discovery of a synergistic effect at the intimate Fe-Mn sites in this study provides valuable insights into the relationship between active sites and promoters.

图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
5篇文章