1. Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2. School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China 3. Zhejiang Institute of Tianjin University, Ningbo 315201, China 4. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
The Fe-Mn bimetallic catalyst is a potential candidate for the conversion of CO2 into value-added chemicals. The interaction between the two metals plays a significant role in determining the catalytic performance, however which remains controversial. In this study, we aim to investigate the impact of tuning the proximity of Fe-Mn bimetallic catalysts with similar nanoparticle size. And its effect on the physicochemical properties of the catalysts and corresponding performance were investigated. It was found that closer Fe-Mn proximity resulted in enhanced CO2 hydrogenation activity and inhibited CH4 formation. The physiochemical properties of prepared catalysts were characterized using X-ray diffraction, H2 temperature programmed reduction, and X-ray photoelectron spectroscopy, revealing that a closer Fe-Mn distance promoted electron transfer from Mn to Fe, thereby facilitating Fe carburization. The adsorption behavior of CO2 and the identification of reaction intermediates were analyzed using CO2-temperature programed desorption and in situ Fourier transform infrared spectroscopy, confirming the intimate Fe-Mn sites contributed to CO2 adsorption and the formation of HCOO* species, ultimately leading to increased CO2 conversion and hydrocarbon production. The discovery of a synergistic effect at the intimate Fe-Mn sites in this study provides valuable insights into the relationship between active sites and promoters.
S De , A Dokania , A Ramirez , J Gascon . Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catalysis, 2020, 10(23): 14147–14185 https://doi.org/10.1021/acscatal.0c04273
2
D Lüthi , Floch M Le , B Bereiter , T Blunier , J Barnola , U Siegenthaler , D Raynaud , J Jouzel , H Fischer , K Kawamura , T F Stocker . High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 2008, 453(7193): 379–382 https://doi.org/10.1038/nature06949
3
E V Kondratenko , G Mul , J Baltrusaitis , G O Larrazábal , J Pérez . Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 2013, 6(11): 3112–3135 https://doi.org/10.1039/c3ee41272e
4
C Zhou , J Shi , W Zhou , K Cheng , Q Zhang , J Kang , Y Wang . Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide. ACS Catalysis, 2020, 10(1): 302–310 https://doi.org/10.1021/acscatal.9b04309
5
J Artz , T E Müller , K Thenert , J Kleinekorte , R Meys , A Sternberg , A Bardow , W Leitner . Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chemical Reviews, 2018, 118(2): 434–504 https://doi.org/10.1021/acs.chemrev.7b00435
6
X Cui , P Gao , S Li , C Yang , Z Liu , H Wang , L Zhong , Y Sun . Selective production of aromatics directly from carbon dioxide hydrogenation. ACS Catalysis, 2019, 9(5): 3866–3876 https://doi.org/10.1021/acscatal.9b00640
7
J Jia , Y Shan , Y Tuo , H Yan , X Feng , D Chen . Review of iron-based catalysts for carbon dioxide Fischer-Tropsch synthesis. Transactions of Tianjin University, 2024, 30(2): 178–197 https://doi.org/10.1007/s12209-024-00392-3
8
J Liu , Y Song , X Guo , C Song , X Guo . Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons. Chinese Journal of Catalysis, 2022, 43(3): 731–754 https://doi.org/10.1016/S1872-2067(21)63802-0
9
P Zhai , Y Li , M Wang , J Liu , Z Cao , J Zhang , Y Xu , X Liu , Y Li , Q Zhu , D Xiao , X D Wen , D Ma . Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route. Chem, 2021, 7(11): 3027–3051 https://doi.org/10.1016/j.chempr.2021.08.019
10
M V Kulikova , M V Chudakova , M I Ivantsov , O S Dementyva , A L Maksimov . Hydrocarbon synthesis from CO2 and H2 using the ultrafine iron-containing catalytic systems based on carbonized cellulose. Eurasian Chemico-Technological Journal, 2022, 24(2): 149–156 https://doi.org/10.18321/ectj1327
11
B Liang , T Sun , J Ma , H Duan , L Li , X Yang , Y Zhang , X Su , Y Huang , T Zhang . Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins. Catalysis Science & Technology, 2019, 9(2): 456–464 https://doi.org/10.1039/C8CY02275E
12
H Wang , Y Yang , J Xu , H Wang , M Ding , Y Li . Study of bimetallic interactions and promoter effects of FeZn, FeMn and FeCr Fischer-Tropsch synthesis catalysts. Journal of Molecular Catalysis A: Chemical, 2010, 326(1): 29–40 https://doi.org/10.1016/j.molcata.2010.04.009
13
P Zhang , J Yan , F Han , X Qiao , Q Guan , W Li . Controllable assembly of Fe3O4-Fe3C@MC by in situ doping of Mn for CO2 selective hydrogenation to light olefins. Catalysis Science & Technology, 2022, 12(7): 2360–2368 https://doi.org/10.1039/D2CY00173J
14
M Al-Dossary , A A Ismail , J L G Fierro , H Bouzid , S A Al-Sayari . Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction. Applied Catalysis B: Environmental, 2015, 165: 651–660 https://doi.org/10.1016/j.apcatb.2014.10.064
15
B Liu , S Geng , J Zheng , X Jia , F Jiang , X Liu . Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins. ChemCatChem, 2018, 10(20): 4718–4732 https://doi.org/10.1002/cctc.201800782
16
T Li , Y Yang , C Zhang , X An , H Wan , Z Tao , H Xiang , Y Li , F Yi , B Xu . Effect of manganese on an iron-based Fischer-Tropsch synthesis catalyst prepared from ferrous sulfate. Fuel, 2007, 86(7): 921–928 https://doi.org/10.1016/j.fuel.2006.10.019
17
X Ding , M Zhu , Y Han , Z Yang . Revisiting the syngas conversion to olefins over Fe-Mn bimetallic catalysts: insights from the proximity effects. Journal of Catalysis, 2023, 417: 213–225 https://doi.org/10.1016/j.jcat.2022.12.003
18
S Liu , Q Zhao , X Han , C Wei , H Liang , Y Wang , S Huang , X Ma . Proximity effect of Fe-Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303 https://doi.org/10.1007/s12209-023-00360-3
19
Y Han , C Fang , X Ji , J Wei , Q Ge , J Sun . Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron. ACS Catalysis, 2020, 10(20): 12098–12108 https://doi.org/10.1021/acscatal.0c03215
20
B Hu , S Frueh , H F Garces , L Zhang , M Aindow , C Brooks , E Kreidler , S L Suib . Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve manganese oxide supported iron catalysts. Applied Catalysis B: Environmental, 2013, 132: 54–61 https://doi.org/10.1016/j.apcatb.2012.11.003
21
H Yang , Y Dang , X Cui , X Bu , J Li , S Li , Y Sun , P Gao . Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts. Applied Catalysis B: Environmental, 2023, 321: 122050 https://doi.org/10.1016/j.apcatb.2022.122050
22
C Qin , K Wu , Y Xu , S Guo , R Li , H Fan , D Xu , M Ding . Accelerated syngas-to-heavy fuels production in heterogeneous catalysis via a proximity effect between a promoter and an active site. Cell Reports. Physical Science, 2023, 4(3): 101327 https://doi.org/10.1016/j.xcrp.2023.101327
23
X Han , J Lv , S Huang , Q Zhao , Y Wang , Z Li , X Ma . Size dependence of carbon-encapsulated iron-based nanocatalysts for Fischer-Trposch synthesis. Nano Research, 2023, 16(5): 6270–6277 https://doi.org/10.1007/s12274-023-5417-4
24
R A Van Santen . Complementary structure sensitive and insensitive catalytic relationships. Accounts of Chemical Research, 2009, 42(1): 57–66 https://doi.org/10.1021/ar800022m
25
B Wang , K Qian , W Yang , W An , L Lou , S Liu , K Yu . ZnFe2O4/BiVO4 Z-scheme heterojunction for efficient visible-light photocatalytic degradation of ciprofloxacin. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1728–1740 https://doi.org/10.1007/s11705-023-2322-z
26
X Ni , K Li , C Li , Q Wu , C Liu , H Chen , Q Wu , A Ju . Construction of NiCo2O4 nanoflake arrays on cellulose-derived carbon nanofibers as a freestanding electrode for high-performance supercapacitors. Frontiers of Chemical Science and Engineering, 2023, 17(6): 691–703 https://doi.org/10.1007/s11705-022-2268-6
27
Y Qi , X Zeng , L Xiong , X Lin , B Liu , Y Qin . Efficient conversion of lignin to alkylphenols over highly stable inverse spinel MnFe2O4 catalysts. Frontiers of Chemical Science and Engineering, 2023, 17(8): 1085–1095 https://doi.org/10.1007/s11705-022-2236-1
28
J Park , K An , Y Hwang , J Park , H Noh , J Kim , J Park , N Hwang , T Hyeon . Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 2004, 3(12): 891–895 https://doi.org/10.1038/nmat1251
29
D Ren , K Gui , S Gu . Comparison of sulfur poisoning resistance of Ce/Mn doped γ-Fe2O3 (001) surface in NH3-SCR reaction with DFT method. Applied Surface Science, 2021, 561: 149847 https://doi.org/10.1016/j.apsusc.2021.149847
30
R D Shannon . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767 https://doi.org/10.1107/S0567739476001551
M Liang , W Kang , K Xie . Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique. Journal of Natural Gas Chemistry, 2009, 18(1): 110–113 https://doi.org/10.1016/S1003-9953(08)60073-0
33
Y Zhu , X Pan , F Jiao , J Li , J Yang , M Ding , Y Han , Z Liu , X Bao . Role of manganese oxide in syngas conversion to light olefins. ACS Catalysis, 2017, 7(4): 2800–2804 https://doi.org/10.1021/acscatal.7b00221
34
L Niu , X Liu , X Liu , Z Lv , C Zhang , X Wen , Y Yang , Y Li , J Xu . In situ XRD study on promotional effect of potassium on carburization of spray-dried precipitated Fe2O3 catalysts. ChemCatChem, 2017, 9(9): 1691–1700 https://doi.org/10.1002/cctc.201601665
35
I Szenti , A Efremova , J Kiss , A Sápi , L Óvári , G Halasi , U Haselmann , Z Zhang , J Morales , K Baán . et al.. Pt/MnO interface induced defects for high reverse water gas shift activity. Angewandte Chemie International Edition, 2024, 136(8): e202317343
36
Q Wang , Y Gao , C Tumurbaatar , T Bold , F Wei , Y Dai , Y Yang . Tuned selectivity and enhanced activity of CO2 methanation over Ru catalysts by modified metal-carbonate interfaces. Journal of Energy Chemistry, 2022, 64: 38–46 https://doi.org/10.1016/j.jechem.2021.04.039
37
C Yang , H Zhao , Y Hou , D Ma . Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. Journal of the American Chemical Society, 2012, 134(38): 15814–15821 https://doi.org/10.1021/ja305048p
38
F Lu , J Huang , Q Wu , Y Zhang . Mixture of α-Fe2O3 and MnO2 powders for direct conversion of syngas to light olefins. Applied Catalysis A: General, 2021, 621: 118213 https://doi.org/10.1016/j.apcata.2021.118213
39
F Lu , X Chen , Z Lei , L Wen , Y Zhang . Revealing the activity of different iron carbides for Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2021, 281: 119521 https://doi.org/10.1016/j.apcatb.2020.119521
40
T Yamashita , P Hayes . Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008, 254(8): 2441–2449 https://doi.org/10.1016/j.apsusc.2007.09.063
41
D Mohanta , K Barman , S Jasimuddin , M Ahmaruzzaman . MnO doped SnO2 nanocatalysts: activation of wide band gap semiconducting nanomaterials towards visible light induced photoelectrocatalytic water oxidation. Journal of Colloid and Interface Science, 2017, 505: 756–762 https://doi.org/10.1016/j.jcis.2017.06.064
42
M C Biesinger , B P Payne , A P Grosvenor , L W M Lau , A R Gerson , R S C Smart . Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011, 257(7): 2717–2730 https://doi.org/10.1016/j.apsusc.2010.10.051
43
D Xu , H Fan , K Liu , G Hou , C Qin , Y Xu , R Li , J Wang , M Ding . Impacts of interaction between active components on catalyst deactivation over KFe/ZSM-5 bifunctional catalyst. ACS Sustainable Chemistry & Engineering, 2023, 11(28): 10441–10452 https://doi.org/10.1021/acssuschemeng.3c01826
44
N Liu , J Wei , J Xu , Y Yu , J Yu , Y Han , K Wang , J I Orege , Q Ge , J Sun . Elucidating the structural evolution of highly efficient Co-Fe bimetallic catalysts for the hydrogenation of CO2 into olefins. Applied Catalysis B: Environmental, 2023, 328: 122476 https://doi.org/10.1016/j.apcatb.2023.122476
45
S E Collins , M A Baltanás , A L Bonivardi . An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3. Journal of Catalysis, 2004, 226(2): 410–421 https://doi.org/10.1016/j.jcat.2004.06.012
46
N H M D Dostagir , R Rattanawan , M Gao , J Ota , J Hasegawa , K Asakura , A Fukouka , A Shrotri . Co Single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO. ACS Catalysis, 2021, 11(15): 9450–9461 https://doi.org/10.1021/acscatal.1c02041
47
C Wang , J Zhang , X Gao , Q Ma , S Fan , T Zhao . CO2 hydrogenation to linear α-olefins on FeCx/ZnO catalysts: effects of surface oxygen vacancies. Applied Surface Science, 2023, 641: 158543 https://doi.org/10.1016/j.apsusc.2023.158543