Formulation of zeolite-mesoporous silica composite catalysts for light olefin production from catalytic cracking
Hassan Alhassawi1(), Edidiong Asuquo1, Shima Zainal1, Yuxin Zhang1, Abdullah Alhelali1, Zhipeng Qie1,2, Christopher M. A. Parlett1,3,4,5, Carmine D’Agostino1, Xiaolei Fan1, Arthur A. Garforth1()
1. Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, UK 2. Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China 3. Diamond Light Source Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK 4. University of Manchester at Harwell, Diamond Light Source Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK 5. UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, UK
Framework materials such as zeolites and mesoporous silicas are commonly used for many applications, especially catalysis and separation. Here zeolite-mesoporous silica composite catalysts (employing zeolite Y, ZSM-5, KIT-6, SBA-15 and MCM-41 mesoporous silica) were prepared (with different weight percent of zeolite Y and ZSM-5) and assessed for catalytic cracking (using n-heptane, as the model compound at 550 °C) with the aim to improve the selectivity/yield of light olefins of ethylene and propylene from n-heptane. Physicochemical properties of the parent zeolites and the prepared composites were characterized comprehensively using several techniques including X-ray diffraction, nitrogen physisorption, scanning electron microscopy, fourier transform infrared spectroscopy, pulsed-field gradient nuclear magnetic resonance and thermogravimetric analysis. Catalytic cracking results showed that the ZY/ZSM-5/KIT-6 composite (20:20:60 wt %) achieved a high n-heptane conversion of 85% with approximately 6% selectivity to ethylene/propylene. In contrast, the ZY/ZSM-5/SBA-15 composite achieved a higher conversion of 95% and an ethylene/propylene ratio of 8%, indicating a more efficient process in terms of both conversion and selectivity. Magnetic resonance relaxation analysis of the ZY/ZSM-5/KIT-6 (20:20:60) catalyst confirmed a micro-mesoporous environment that influences n-heptane diffusion and mass transfer. As zeolite Y and ZSM-5 have micropores, n-heptane can move and undergo hydrogen transfer reactions, whereas KIT-6 has mesopores that facilitate n-heptane’s accessibility to the active sites of zeolite Y and ZSM-5.
Corresponding Author(s):
Hassan Alhassawi,Arthur A. Garforth
引用本文:
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(11): 133.
Hassan Alhassawi, Edidiong Asuquo, Shima Zainal, Yuxin Zhang, Abdullah Alhelali, Zhipeng Qie, Christopher M. A. Parlett, Carmine D’Agostino, Xiaolei Fan, Arthur A. Garforth. Formulation of zeolite-mesoporous silica composite catalysts for light olefin production from catalytic cracking. Front. Chem. Sci. Eng., 2024, 18(11): 133.
S Zhao , H Li , B Wang , X Yang , Y Peng , H Du , Y Zhang , D Han , Z Li . Recent advances on syng as conversion targeting light olefins. Fuel, 2022, 321: 124124 https://doi.org/10.1016/j.fuel.2022.124124
2
S Chernyak , M Corda , J Dath , V Ordomsky , A Khodakov . Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of-the-art and outlook. Chemical Society Reviews, 2022, 51(18): 7994–8044 https://doi.org/10.1039/D1CS01036K
3
S Tabibian , M Sharifzadeh . Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol. Renewable & Sustainable Energy Reviews, 2023, 179: 113281 https://doi.org/10.1016/j.rser.2023.113281
4
B De GraafR A Y Fletcher. On-demand propylene from naphtha: preparing for change. www.digitalrefining.com. Accenture Website, 2023
5
N Fattahi , K Triantafyllidis , R Luque , A Ramazani . Zeolite-based catalysts: a valuable approach toward ester bond formation. Catalysts, 2019, 9(9): 758 https://doi.org/10.3390/catal9090758
6
M A Alabdullah , T Shoinkhorova , A Dikhtiarenko , S Ould-Chikh , A Rodriguez-Gomez , S Chung , A O Alahmadi , I Hita , S Pairis , J Hazemann . et al.. Understanding catalyst deactivation during the direct cracking of crude oil. Catalysis Science & Technology, 2022, 12(18): 5657–5670 https://doi.org/10.1039/D2CY01125E
7
A Al-Shammari , S Ali , N Al-Yassir , A Aitani , K Ogunronbi , K Al-Majnouni , S Al-Khattaf . Catalytic cracking of heavy naphtha-range hydrocarbons over different zeolites structures. Fuel Processing Technology, 2014, 122: 12–22 https://doi.org/10.1016/j.fuproc.2014.01.021
8
X Xian , C Ran , P Yang , Y Chu , S Zhao , L Dong . Effect of the acidity of HZSM-5/MCM-41 hierarchical zeolite on its catalytic performance in supercritical catalytic cracking of n-dodecane: experiments and mechanism. Catalysis Science & Technology, 2018, 8(16): 4241–4256 https://doi.org/10.1039/C8CY00908B
9
S Abdulridha , R Zhang , S Xu , A Tedstone , X Ou , J Gong , B Mao , M Frogley , C Bawn , Z Zhou . et al.. An efficient microwave-assisted chelation (MWAC) post-synthetic modification method to produce hierarchical Y zeolites. Microporous and Mesoporous Materials, 2021, 311: 110715 https://doi.org/10.1016/j.micromeso.2020.110715
10
B Jermy , M Siddiqui , A Aitani , M Saeed , S Al-Khattaf . Utilization of ZSM-5/MCM-41 composite as FCC catalyst additive for enhancing propylene yield from VGO cracking. Journal of Porous Materials, 2012, 19(4): 499–509 https://doi.org/10.1007/s10934-011-9499-0
11
D Zhao , Q Huo , J Feng , B Chmelka , G Stucky . Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036 https://doi.org/10.1021/ja974025i
12
D Choi , R Ryoo . Template synthesis of ordered mesoporous organic polymeric materials using hydrophobic silylated KIT-6 mesoporous silica. Journal of Materials Chemistry, 2010, 20(26): 5544–5550 https://doi.org/10.1039/c0jm00671h
13
F Kleitz , S Choi , R Ryoo . Cubic Ia 3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications, 2003, 17(17): 2136–2137 https://doi.org/10.1039/b306504a
14
L Forster , M Lutecki , H Fordsmand , L Yu , C D’Agostino . Tailoring morphology of hierarchical catalysts for tuning pore diffusion behaviour: a rational guideline exploiting bench-top pulsed-field gradient (PFG) nuclear magnetic resonance (NMR). Molecular Systems Design & Engineering, 2020, 5(7): 1193–1204 https://doi.org/10.1039/D0ME00036A
15
N La-Salvia , J Lovón-Quintana , A Lovón , G Valença . Influence of aluminium addition in the framework of MCM-41 mesoporous molecular sieve synthesized by non-hydrothermal method in an alkali-free system. Materials Research, 2017, 20(6): 1461–1469 https://doi.org/10.1590/1980-5373-mr-2016-1064
16
S Abbaspour , A Nourbakhsh , R Kalbasi , K Mackenzie . Investigating the properties of the nanocomposite (poly(4-vinyl pyridine)/Al-SBA-15): a precursor for β-SiAlON. Molecular Crystals and Liquid Crystals, 2012, 555(1): 104–111 https://doi.org/10.1080/15421406.2012.635078
17
D Zhao , J Feng , Q Huo , N Melosh , G Fredrickson , B Chmelka , G Stucky . Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552 https://doi.org/10.1126/science.279.5350.548
18
P Gaudin , S Dorge , H Nouali , D Kehrli , L Michelin , L Josien , P Fioux , L Vidal , M Soulard , M Vierling . et al.. Synthesis of Cu-Ce/KIT-6 materials for SOx removal. Applied Catalysis A, General, 2015, 504: 110–118 https://doi.org/10.1016/j.apcata.2014.11.024
19
J FlorekR Guillet-NicolasF Kleitz. Ordered mesoporous silica: synthesis and applications. Functional Materials for Energy, Sustainable Development and Biomedical Sciences, 2014, 61–100
20
R Merkache , I Fechete , M Maamache , M Bernard , P Turek , K Al-Dalama , F Garin . 3D ordered mesoporous Fe-KIT-6 catalysts for methylcyclohexane (MCP) conversion and carbon dioxide (CO2) hydrogenation for energy and environmental applications. Applied Catalysis A, General, 2015, 504: 672–681 https://doi.org/10.1016/j.apcata.2015.03.032
21
Á Beltrán-Osuna , Ribelles J Gómez , J Perilla . A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type. Journal of Nanoparticle Research, 2017, 19(12): 381 https://doi.org/10.1007/s11051-017-4077-2
22
Q Gao , Y Zhang , K Zhou , H Wu , J Guo , L Zhang , A Duan , Z Zhao , F Zhang , Y Zhou . Synthesis of ZSM-5/KIT-6 with a tunable pore structure and its catalytic application in the hydrodesulfurization of dibenzothiophene and diesel oil. RSC Advances, 2018, 8(51): 28879–28890 https://doi.org/10.1039/C8RA05675G
23
E Piciorus , P Svera , C Ianasi . Porous silicas from mixtures of Na2Si3O7 aqueous solution and teos. Influence of sodium silicate amount. Studia Universitatis Babes-Bolyai. Chemia, 2021, 66(1): 35–48 https://doi.org/10.24193/subbchem.2021.01.03
24
H Keshavarz , A Khavandi , S Alamolhoda , M Naimi-Jamal . pH-sensitive magnetite mesoporous silica nanocomposites for controlled drug delivery and hyperthermia. RSC Advances, 2020, 10(64): 39008–39016 https://doi.org/10.1039/D0RA06916G
K Byrappa , B Kumar . Characterization of zeolites by infrared spectroscopy. Asian Journal of Chemistry, 2007, 19(6): 4933–4935
27
R Zhang , D Raja , Y Zhang , Y Yan , A Garforth , Y Jiao , X Fan . Sequential Microwave-assisted dealumination and hydrothermal alkaline treatments of Y zeolite for preparing hierarchical mesoporous zeolite catalysts. Topics in Catalysis, 2020, 63: 340–350 https://doi.org/10.1007/s11244-020-01268-1
28
S Kouser , A Hezam , M Khadri , S Khanum . A review on zeolite imidazole frameworks: synthesis, properties, and applications. Journal of Porous Materials, 2022, 29: 663–681 https://doi.org/10.1007/s10934-021-01184-z
29
J Zang , H Yu , G Liu , M Hong , J Liu , T Chen . Research progress on modifications of zeolite Y for improved catalytic properties. Inorganics, 2023, 11(1): 22 https://doi.org/10.3390/inorganics11010022
30
M Bukhtiyarova , G Echevskii . Coke formation on zeolites Y and their deactivation model. Petroleum Chemistry, 2020, 60(4): 532–539 https://doi.org/10.1134/S0965544120040039
31
S Daniel , C Monguen , A El Kasmi , M Arshad , Z Tian . Oxidative dehydrogenation of propane to olefins promoted by Zr-modified ZSM-5. Catalysis Letters, 2023, 153(1): 285–299 https://doi.org/10.1007/s10562-022-03977-6
32
X Hou , L Zhao , Z Diao . Roles of alkenes and coke formation in the deactivation of ZSM-5 zeolites during n-pentane catalytic cracking. Catalysis Letters, 2020, 150(9): 2716–2725 https://doi.org/10.1007/s10562-020-03173-4
33
E Forman , M Trujillo , K J Ziegler , S Bradley , H Wang , S Prabhakar , S Vasenkov . Self-diffusion of heptane inside aggregates of porous alumina particles by pulsed field gradient NMR. Microporous and Mesoporous Materials, 2016, 229: 117–123 https://doi.org/10.1016/j.micromeso.2016.04.027
C D’Agostino , G Brett , P Miedziak , D Knight , G Hutchings , L Gladden , M Mantle . Understanding the solvent effect on the catalytic oxidation of 1,4-butanediol in methanol over Au/TiO2 catalyst: NMR diffusion and relaxation studies. Chemistry, 2012, 18(45): 14426–14433 https://doi.org/10.1002/chem.201201922
36
Z Run , D Xiao , J Yilai , C D’Agostino , Y Wenfu , X Fan . Controllable synthesis, diffusion study and catalysis of hierarchical zeolites. Chemical Journal of Chinese Universities, 2021, 42(1): 74–100