γ-Valerolactone/CuCl2 biphasic system for high total monosaccharides recovery from pretreatment and enzymatic hydrolysis processes of eucalyptus
Shuhua Mo, Yao Zheng, Jianyu Gong, Minsheng Lu()
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
The efficient fractionation and recovery of monosaccharides (xylose and glucose) from lignocellulosic biomass facilitates subsequent sugar-based derivative production. This study introduces a one-pot γ-valerolactone/CuCl2 biphasic pretreatment system (100-mmol·L–1 CuCl2, 180 °C, 60 min) capable of achieving removal rates of 92.25% and 90.64% for xylan and lignin, respectively, while retaining 83.88% of cellulose. Compared to other metal chlorides (NaCl, LiCl, FeCl3, and AlCl3), the γ-valerolactone/CuCl2 system recovered 121.2 mg·(g eucalyptus)–1 of xylose and 55.96 mg·(g eucalyptus)–1 of glucose during the pretreatment stage and 339.2 mg·(g eucalyptus)–1 of glucose during the enzymatic hydrolysis stage (90.78% of glucose yield), achieving a total monosaccharide recovery of 86.31%. In addition, the recovery of γ-valerolactone was 79.33%, exhibiting minimal changes relative to the pretreatment performance. The method proposed in this study allows a high total monosaccharides recovery and a circular economy-oriented pretreatment approach, offering a viable pathway for biorefinery.
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(11): 139.
Shuhua Mo, Yao Zheng, Jianyu Gong, Minsheng Lu. γ-Valerolactone/CuCl2 biphasic system for high total monosaccharides recovery from pretreatment and enzymatic hydrolysis processes of eucalyptus. Front. Chem. Sci. Eng., 2024, 18(11): 139.
S X Nie , C J Chen , C J Zhu . Advanced biomass materials: progress in the applications for energy, environmental, and emerging fields. Frontiers of Chemical Science and Engineering, 2023, 17(7): 795–797 https://doi.org/10.1007/s11705-023-2336-6
2
M Wu , J K Liu , Z Y Yan , B Wang , X M Zhang , F Xu , R C Sun . Efficient recovery and structural characterization of lignin from cotton stalk based on a biorefinery process using a γ-valerolactone/water system. RSC Advances, 2016, 6(8): 6196–6204 https://doi.org/10.1039/C5RA23095K
3
T Y Nguyen , C M Cai , R Kumar , C E Wyman . Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem, 2015, 8(10): 1716–1725 https://doi.org/10.1002/cssc.201403045
4
B Satari , K Karimi , R Kumar . Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustainable Energy & Fuels, 2019, 3(1): 11–62 https://doi.org/10.1039/C8SE00287H
5
A S Patri , R Mohan , Y Q Pu , C G Yoo , A J Ragauskas , R Kumar , D Kisailus , C M Cai , C E Wyman . THF co-solvent pretreatment prevents lignin redeposition from interfering with enzymes yielding prolonged cellulase activity. Biotechnology for Biofuels, 2021, 14(1): 63 https://doi.org/10.1186/s13068-021-01904-2
6
J Y Cheng , C Huang , Y N Zhan , X Z Liu , J Wang , X Z Meng , C G Yoo , G G Fang , A J Ragauskas . A high-solid DES pretreatment using never-dried biomass as the starting material: towards high-quality lignin fractionation. Green Chemistry, 2023, 25(4): 1571–1581 https://doi.org/10.1039/D2GC04595H
7
H Xu , S H Mo , Q Peng , M S Lu . One-pot lignocellulose fractionation using lewis acid-catalyzed GVL/H2O system toward complete exploitation of eucalyptus. Industrial Crops and Products, 2023, 202: 117026 https://doi.org/10.1016/j.indcrop.2023.117026
8
G Song , M Madadi , C Sun , L Shao , M Tu , A Abdulkhani , Q Zhou , X Lu , J Hu , F Sun . Surfactants facilitated glycerol organosolv pretreatment of lignocellulosic biomass by structural modification for co-production of fermentable sugars and highly reactive lignin. Bioresource Technology, 2023, 383: 129178 https://doi.org/10.1016/j.biortech.2023.129178
9
W H Li , X S Tan , C L Miao , Z Y Zhang , Y X Wang , A J Ragauskas , X S Zhuang . Mild organosolv pretreatment of sugarcane bagasse with acetone/phenoxyethanol/water for enhanced sugar production. Green Chemistry, 2023, 25(3): 1169–1178 https://doi.org/10.1039/D2GC04404H
10
H Q Le , A Zaitseva , J P Pokki , M Stahl , V Alopaeus , H Sixta . Solubility of organosolv lignin in γ-valerolactone/water binary mixtures. ChemSusChem, 2016, 9(20): 2939–2947 https://doi.org/10.1002/cssc.201600655
11
J S Luterbacher , J M Rand , D M Alonso , J Han , J T Youngquist , C T Maravelias , B F Pfleger , J A Dumesic . Nonenzymatic sugar production from biomass using biomass-derived gamma-valerolactone. Science, 2014, 343(6168): 277–280 https://doi.org/10.1126/science.1246748
12
Y Wu , H R Ji , X X Ji . Biomass pretreatment using biomass-derived organic solvents facilitates the extraction of lignin and enzymatic hydrolysis of glucan. Cellulose, 2023, 30(5): 2859–2872 https://doi.org/10.1007/s10570-023-05061-7
13
S N Sun , X Chen , Y H Tao , X F Cao , M F Li , J L Wen , S X Nie , R C Sun . Pretreatment of eucalyptus urophylla in gamma-valerolactone/dilute acid system for removal of non-cellulosic components and acceleration of enzymatic hydrolysis. Industrial Crops and Products, 2019, 132: 21–28 https://doi.org/10.1016/j.indcrop.2019.02.004
14
L J Jonsson , C Martin . Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 2016, 199: 103–112 https://doi.org/10.1016/j.biortech.2015.10.009
15
P Moodley , E B G Kana . Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: effect on physiochemical structure and enzymatic saccharification. Bioresource Technology, 2017, 235: 35–42 https://doi.org/10.1016/j.biortech.2017.03.031
16
Y J Hou , S S Wang , B J Deng , Y Ma , X Long , C R Qin , C Liang , C X Huang , S Q Yao . Selective separation of hemicellulose from poplar by hydrothermal pretreatment with ferric chloride and pH buffer. International Journal of Biological Macromolecules, 2023, 251: 126374 https://doi.org/10.1016/j.ijbiomac.2023.126374
17
I Romero , J C Lopez-Linares , M Moya , E Castro . Optimization of sugar recovery from rapeseed straw pretreated with FeCl3. Bioresource Technology, 2018, 268: 204–211 https://doi.org/10.1016/j.biortech.2018.07.112
18
C Lee , T Y Wu , K J Yong , C K Cheng , L F Siow , J M Jahim . Investigation into lewis and bronsted acid interactions between metal chloride and aqueous choline chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass. Science of the Total Environment, 2022, 827: 10 https://doi.org/10.1016/j.scitotenv.2022.154049
19
N Wang , J Zhang , H H Wang , Q Li , S A Wei , D Wang . Effects of metal ions on the hydrolysis of bamboo biomass in 1-butyl-3-methylimidazolium chloride with dilute acid as catalyst. Bioresource Technology, 2014, 173: 399–405 https://doi.org/10.1016/j.biortech.2014.09.125
20
E K New , T Y Wu , S K Tnah , A Procentese , C K Cheng . Pretreatment and sugar recovery of oil palm fronds using choline chloride: calcium chloride hexahydrate integrated with metal chloride. Energy, 2023, 277: 127486 https://doi.org/10.1016/j.energy.2023.127486
21
X Y Han , X B Zhang , T Dai , J Xie , H D Zhang . Enhancing the co-production of sugars from sugarcane bagasse via CuCl2-catalyzed organosolv pretreatment and additives. Fuel Processing Technology, 2023, 241: 107629 https://doi.org/10.1016/j.fuproc.2022.107629
22
M M Bradford . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1-2): 248–254 https://doi.org/10.1016/0003-2697(76)90527-3
23
W J Ying , Y Xu , J H Zhang . Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar. Bioresource Technology, 2021, 321: 9 https://doi.org/10.1016/j.biortech.2020.124472
24
Z C Jiang , V L Budarin , J J Fan , J Remón , T Z Li , C W Hu , J H Clark . Sodium chloride-assisted depolymerization of xylo-oligomers to xylose. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4098–4104 https://doi.org/10.1021/acssuschemeng.7b04463
25
S Q Yao , S X Nie , Y Yuan , S F Wang , C R Qin . Efficient extraction of bagasse hemicelluloses and characterization of solid remainder. Bioresource Technology, 2015, 185: 21–27 https://doi.org/10.1016/j.biortech.2015.02.052
26
M Y Yang , M S U Rehman , T X Yan , A U Khan , P Oleskowicz-Popiel , X Xu , P Cui , J Xu . Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent. Bioresource Technology, 2018, 249: 737–743 https://doi.org/10.1016/j.biortech.2017.10.055
27
R J Wu , X D Wang , Y C Zhang , Y J Fu , M H Qin . Efficient removal of surface-deposited pseudo-lignin and lignin droplets by isothermal phase separation during hydrolysis. Bioresource Technology, 2022, 345: 5 https://doi.org/10.1016/j.biortech.2021.126533
28
S D Shinde , X Z Meng , R Kumar , A J Ragauskas . Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 2018, 20(10): 2192–2205 https://doi.org/10.1039/C8GC00353J
29
R Kumar , S Bhagia , M D Smith , L Petridis , R G Ong , C M Cai , A Mittal , M H Himmel , V Balan , B E Dale , A J Ragauskas , J C Smith , C E Wyman . Cellulose-hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chemistry, 2018, 20(4): 921–934 https://doi.org/10.1039/C7GC03518G
30
R Kumar , F Hu , P Sannigrahi , S Jung , A J Ragauskas , C E Wyman . Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnology and Bioengineering, 2013, 110(3): 737–753 https://doi.org/10.1002/bit.24744
31
S R Kamireddy , J B Li , M Tucker , J Degenstein , Y Ji . Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Industrial & Engineering Chemistry Research, 2013, 52(5): 1775–1782 https://doi.org/10.1021/ie3019609
32
E Jasiukaityte-Grojzdek , M Hus , M Grilc , B Likozar . Acid-catalyzed α-O-4 aryl-ether cleavage mechanisms in (aqueous) γ-valerolactone: catalytic depolymerization reactions of lignin model compound during organosolv pretreatment. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17475–17486 https://doi.org/10.1021/acssuschemeng.0c06099
33
M C E Santo , D H Fockink , V O A Pellegrini , F E G Guimaraes , E R deAzevedo , L P Ramos , I Polikarpov . Physical techniques shed light on the differences in sugarcane bagasse structure subjected to steam explosion pretreatments at equivalent combined severity factors. Industrial Crops and Products, 2020, 158: 113003 https://doi.org/10.1016/j.indcrop.2020.113003
34
J Yu , N Paterson , J Blamey , M Millan . Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 2017, 191: 140–149 https://doi.org/10.1016/j.fuel.2016.11.057
35
Y C Liu , J Xie , N Wu , Y H Ma , C Menon , J Tong . Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose, 2019, 26(8): 4707–4719 https://doi.org/10.1007/s10570-019-02429-6
36
S De , S Mishra , E Poonguzhali , M Rajesh , K Tamilarasan . Fractionation and characterization of lignin from waste rice straw: biomass surface chemical composition analysis. International Journal of Biological Macromolecules, 2020, 145: 795–803 https://doi.org/10.1016/j.ijbiomac.2019.10.068
37
J S Luterbacher , J Y Parlange , L P Walker . A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass. Biotechnology and Bioengineering, 2013, 110(1): 127–136 https://doi.org/10.1002/bit.24614
38
H Y Mou , S B Wu . Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification. Bioresource Technology, 2016, 220: 637–640 https://doi.org/10.1016/j.biortech.2016.08.072
39
Q L Chu , K Song , J Wang , J G Hu , X Y Chen . Improving enzymatic saccharification of hardwood through lignin modification by carbocation scavengers and the underlying mechanisms. Bioresource Technology, 2019, 294: 9 https://doi.org/10.1016/j.biortech.2019.122216
40
P Wang , Y Su , W Tang , C X Huang , C H Lai , Z Ling , Q Yong . Revealing enzymatic digestibility of kraft pretreated larch based on a comprehensive analysis of substrate-related factors. Renewable Energy, 2022, 199: 1461–1468 https://doi.org/10.1016/j.renene.2022.08.152
41
H A Ruiz , M Conrad , S N Sun , A Sanchez , G J M Rocha , A Romaní , E Castro , A Torres , R M Rodríguez-Jasso , L P Andrade , I Smirnova , R C Sun , A S Meyer . Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 2020, 299: 122685 https://doi.org/10.1016/j.biortech.2019.122685
42
L Yang , L Q Xu , H Y Yang , Z J Shi , P Zhao , J Yang . Effect of different washing methods on reducing the inhibition of surface lignin in the tetraethylammonium chloride/oxalic acid-based deep eutectic solvent pretreatment. Industrial Crops and Products, 2022, 188: 115728 https://doi.org/10.1016/j.indcrop.2022.115728
43
M J Cui , X Y Li . Additives enhancing enzymatic hydrolysis of wheat straw to obtain fermentable sugar. Applied Biochemistry and Biotechnology, 2023, 195(2): 1059–1071 https://doi.org/10.1007/s12010-022-04200-3
44
Y L Loow , T Y Wu , K A Tan , Y S Lim , L F Siow , J M Jahim , A W Mohammad , W H Teoh . Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. Journal of Agricultural and Food Chemistry, 2015, 63(38): 8349–8363 https://doi.org/10.1021/acs.jafc.5b01813
45
L H Chen , R Chen , S Y Fu . Preliminary exploration on pretreatment with metal chlorides and enzymatic hydrolysis of bagasse. Biomass and Bioenergy, 2014, 71: 311–317 https://doi.org/10.1016/j.biombioe.2014.09.026
46
H Y Zhang , Y Xu , S Y Yu . Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresource Technology, 2017, 234: 343–349 https://doi.org/10.1016/j.biortech.2017.02.094
47
Q Z Yang , W Tang , C L Ma , Y C He . Efficient co-production of xylooligosaccharides, furfural and reducing sugars from yellow bamboo via the pretreatment with biochar-based catalyst. Bioresource Technology, 2023, 387: 129637 https://doi.org/10.1016/j.biortech.2023.129637
48
P Moodley , Y Sewsynker-Sukai , E B G Kana . Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: potential for bioethanol production. Bioresource Technology, 2020, 310: 123372 https://doi.org/10.1016/j.biortech.2020.123372
49
C Zhang , C Y Ma , L H Xu , Y Y Wu , J L Wen . The effects of mild lewis acids-catalyzed ethanol pretreatment on the structural variations of lignin and cellulose conversion in balsa wood. International Journal of Biological Macromolecules, 2021, 183: 1362–1370 https://doi.org/10.1016/j.ijbiomac.2021.05.091
50
X Chen , H Y Li , S N Sun , X F Cao , R C Sun . Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw. Scientific Reports, 2016, 6(1): 39354 https://doi.org/10.1038/srep39354