Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (11): 128   https://doi.org/10.1007/s11705-024-2479-0
  本期目录
Advanced membrane separation based on two-dimensional porous nanosheets
Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye(), Qingping Xin(), Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang()
State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
 全文: PDF(28291 KB)   HTML
Abstract

Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.

Key wordstwo-dimensional porous nanosheets    membranes    gas separation    water treatment    humidity control
收稿日期: 2024-03-04      出版日期: 2024-08-13
Corresponding Author(s): Hui Ye,Qingping Xin,Yuzhong Zhang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(11): 128.
Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye, Qingping Xin, Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang. Advanced membrane separation based on two-dimensional porous nanosheets. Front. Chem. Sci. Eng., 2024, 18(11): 128.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2479-0
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I11/128
  
Fig.1  
Fig.2  
Fig.3  
  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Membranes Gas permeability Selectivity Ref.
Pebax 1657/F-Nd-6% PCO2 1265 Barrer αCO2/CH4 35.7 [75]
Pebax 1657/f-F-Ce-8% PCO2 1823 Barrer αCO2/CH4 35 [76]
XLPEO/PEI-F-Ce-2% PCO2 641 Barrer αCO2/N2 70.1 [77]
GO membrane PO2 29 Barrer αO2/N2 6 [78]
Au-coated double-layer graphene PH2 2.23 × 105 GPU αH2/CO2 31.3 [81]
6FDA-durene-DABA/CBMN MMMs PCO2 400 Barrer αCO2/CH4 23 [85]
Amino-functionalized Zn2(bim)4 nanosheet membranes PH2 1417 GPU αH2/CO2 1158 [91]
3% PDA@TD-COF PCO2 9750.6 Barrer αCO2/N2 26.4 [93]
TpPa-2 nanosheet membranes PCO2 328 GPU αCO2/H2 22 [26]
Tab.1  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Membranes Water vapor permeance Water vapor/N2 selectivity Ref.
COF-XPAN 2973 GPU [27]
PEBAX/IL@F-Ce MMM 4.53?×?105 Barrer 1.69?×?105 [28]
GO membranes 1.4 m3·m–2·h–1 13000 [103]
UiO-66-NH2 TFN 2370 GPU 769 [107]
Tab.2  
Fig.27  
Fig.28  
Fig.29  
Fig.30  
Fig.31  
Fig.32  
Fig.33  
Fig.34  
Fig.35  
MMMs Fluxes Rejections Ref.
Single-layer porous graphene membrane Water flux 106?g·m–2·s–1 [64]
GO membrane Water permeance 206.7 L·m–2·h–1·bar–1 Dye rejections > 98.5% [114]
g-C3N4 membrane Water permeance 29?L·m–2·h–1·bar–1 87% for 3?nm molecules [115]
Bi-layered COF nanofilms Na2SO4 rejection 95.8% [123]
F-Ce/PES membrane Water permeance 400–500 L·m–2·h–1·bar–1 [127]
Tab.3  
Fig.36  
Fig.37  
1 Z Ahmed , F Rehman , U Ali , A Ali , M Iqbal , K H Thebo , A Ali , M Iqbal , K H Thebo . Recent advances in MXene-based separation membranes. ChemBioEng Reviews, 2021, 8(2): 110–120
https://doi.org/10.1002/cben.202000026
2 S P Kaldis , G C Kapantaidakis , G P Sakellaropoulos . Polymer membrane conditioning and design for enhanced CO2-N2 separation. Coal Science and Technology, 1995, 24: 1927–1930
https://doi.org/10.1016/S0167-9449(06)80197-7
3 J R Werber , C O Osuji , M Elimelech . Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018–16034
https://doi.org/10.1038/natrevmats.2016.18
4 L Wang , M S H Boutilier , P R Kidambi , D Jang , N Hadjiconstantinou , R Karnik . Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522
https://doi.org/10.1038/nnano.2017.72
5 W J Koros , C Zhang . Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297
https://doi.org/10.1038/nmat4805
6 D S Sholl , R P Lively . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
7 W Wang , Y Y Wei , J Fan , J H Cai , Z Lu , L Ding , H H Wang . Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15(4): 793–819
https://doi.org/10.1007/s11705-020-2016-8
8 A Giwa , M Ahmed , S W Hasan . Polymers for membrane filtration in water purification. Polymeric Materials for Clean Water, 2019, 16: 167–190
https://doi.org/10.1007/978-3-030-00743-0_8
9 H B Park , J Kamcev , L M Robeson , M Elimelech , B D Freeman . Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530–0540
10 Y Cheng , Y Pu , D Zhao . Two-dimensional membranes: new paradigms for high-performance separation membranes. Chemistry, an Asian Journal, 2020, 15(15): 2241–2270
https://doi.org/10.1002/asia.202000013
11 K S Novoselov , A K Geim , S V Morozov , D Jiang , Y Zhang , S V Dubonos , I V Grigorieva , A A Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
12 H Bux , F Liang , Y Li , J Cravillon , M Wiebcke , J Caro . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
https://doi.org/10.1021/ja907359t
13 Y T Qin , Y Wan , J Guo , M T Zhao . Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702
https://doi.org/10.1016/j.cclet.2021.07.013
14 A P Côté , A I Benin , N W Ockwig , M O’keeffe , A J Matzger , O M. Matzger A J Yaghi , O M Yaghi . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
https://doi.org/10.1126/science.1120411
15 M Alhabeb , K Maleski , B Anasori , P Lelyukh , L Clark , S Sin , Y Gogotsi . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
https://doi.org/10.1021/acs.chemmater.7b02847
16 X Zhang , X Xie , H Wang , J Zhang , B Pan , Y Xie . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 2013, 135(1): 18–21
https://doi.org/10.1021/ja308249k
17 Q Wang , D O’hare . Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
https://doi.org/10.1021/cr200434v
18 H Zhang . Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
https://doi.org/10.1021/acsnano.5b05040
19 L Ding , Y Y Wei , Y J Wang , H B Chen , J Caro , H H Wang . A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
https://doi.org/10.1002/anie.201609306
20 T F Ajibade , H L Tian , K H Lasisi , K S Zhang . Bio-inspired PDA@WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye. Separation and Purification Technology, 2022, 299: 12711–12722
https://doi.org/10.1016/j.seppur.2022.121711
21 S Q Han , W H You , S H Lv , C J Du , X Zhang , E Zhang , J Y Zhu , Y T Zhang . Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance. Desalination, 2023, 548: 116300–116311
https://doi.org/10.1016/j.desal.2022.116300
22 M Kunimatsu , K Nakagawa , T Yoshioka , T Shintani , T Yasui , E Kamio , S C E Tsang , J X Li , H Matsuyama . Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117579–117608
https://doi.org/10.1016/j.memsci.2019.117598
23 Y Liu , X P Wang , Z A Zong , R J Lin , X Y Zhang , F S Chen , W D Ding , L L Zhang , X M Meng , J W Hou . Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. Journal of Membrane Science, 2022, 653: 120520–120531
https://doi.org/10.1016/j.memsci.2022.120520
24 H Liu , B Li , P Zhao , R M Xu , C Y Tang , W L Song , Z A Habib , X H Wang . Fabrication of novel thin-film composite membrane based on ultrathin metal-organic framework interlayer for enhancing forward osmosis performance. Chinese Chemical Letters, 2023, 34(12): 108369–108379
https://doi.org/10.1016/j.cclet.2023.108369
25 M Liu , P A Gurr , Q Fu , P A Webley , G G Qiao . Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
https://doi.org/10.1039/C8TA09070J
26 P Y Wang , Y Peng , C Y Zhu , R Yao , H L Song , L Kun , W S Yang . Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angewandte Chemie International Edition, 2021, 60(35): 19047–19052
https://doi.org/10.1002/anie.202106346
27 P Manchanda , S Chisca , L Upadhyaya , V E Musteata , M Carrington , S P Nunes . Diffusion-induced in situ growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25802–25807
https://doi.org/10.1039/C9TA11191C
28 F Wang , S Han , Y Zhang , L Gao , X Li , L Zhao , H Ye , H Li , Q Xin , Y Zhang . Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets. Communications Chemistry, 2022, 5(1): 2065–2075
https://doi.org/10.1038/s42004-022-00681-9
29 J Wang , P Yang , L Liu , B Zheng , J Jiang , J Ma , Y Yan , S Yang , L Yang , Q K Liu . et al.. Facile exfoliation of two-dimensional crystalline monolayer nanosheets from an amorphous metal-organic framework. Chinese Chemical Society Chemistry, 2022, 4(6): 1879–1888
https://doi.org/10.31635/ccschem.021.202101208
30 K Zhang , Z B Fang , Q Q Huang , A A Zhang , J L Li , J Y Li , Y Zhang , T Zhang , R Cao . Exfoliation of a two-dimensional metal-organic framework for enhanced photocatalytic CO2 reduction. Inorganic Chemistry, 2023, 62(22): 8472–8477
https://doi.org/10.1021/acs.inorgchem.3c01142
31 B Shao , X L He , D Huang , Y L Xiang , Y Luo , Y M Wei , L B Jiang , R K Huang , M Dong , J Huang . Oriented exfoliating 3D metal-organic frameworks into ultrathin metal-organic nanosheets with different crystal faces. Advanced Functional Materials, 2024, 2315911
https://doi.org/10.1002/adfm.202315911
32 H N Abdelhamid . High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9(1): 104404–104415
https://doi.org/10.1016/j.jece.2020.104404
33 M Yin , Z Li , L Wang , S K Tang . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550–123559
https://doi.org/10.1016/j.seppur.2023.123550
34 S K Jeong , J Y Jeong , S Lim , W S Kim , H T Kwon , J Kim . Mixed matrix membranes incorporating two-dimensional ZIF-8 nanosheets for enhanced CO2/N2 separation. Chemical Engineering Journal, 2024, 481: 148294–148305
https://doi.org/10.1016/j.cej.2023.148294
35 J Yang , L Kong , C Huang , C C Wang , S H Wei , L Zhou . Liquid-liquid interfacial approach for rapid synthesis of well-crystalline two-dimensional metal-organic frameworks for nitro reduction. Chemical Engineering Journal, 2024, 485: 149969–149979
https://doi.org/10.1016/j.cej.2024.149969
36 H Lu , S Zhu . Interfacial synthesis of free-standing metal-organic framework membranes. European Journal of Inorganic Chemistry, 2013, 2013(8): 1294–1300
https://doi.org/10.1002/ejic.201201009
37 L A Cao , M Wei , X Guo , D L Wang , L Chen , J Guo . Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing. Ionics, 2024, 30(4): 2375–2385
https://doi.org/10.1007/s11581-024-05406-7
38 Y Y Guo , Q Zhang , S Q Gao , H Y Wang , Z Y Li , J K Qiu , Y Zhao , Z M Liu , J J Wang . Bi-functional ionic liquids facilitate liquid-phase exfoliation of porphyrin-based covalent organic frameworks in water for highly efficient CO2 photoreduction. Green Chemistry, 2022, 24(24): 9530–9541
https://doi.org/10.1039/D2GC03194A
39 J Yao , C Liu , X Liu , J Guo , S Zhang , J Zheng , S Li . Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864–117875
https://doi.org/10.1016/j.memsci.2020.117864
40 T Wang , R J Zhang , P D Zhai , M J Li , X Y Liu , C X Li . Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(2): 1292–1299
https://doi.org/10.1039/D3TA06312G
41 R Liu , Q Yan , Y Tang , R Liu , L Huang , Q Shuai . NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. Journal of Hazardous Materials, 2022, 421: 126702–126714
https://doi.org/10.1016/j.jhazmat.2021.126702
42 C Ding , M Breunig , J Timm , R Marschall , J Senker , S Agarwal . Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Advanced Functional Materials, 2021, 31(49): 2106507–2106515
https://doi.org/10.1002/adfm.202106507
43 J Chen , R Li , S Liu , J Zhang , X Wu , J Wang . Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration. Journal of Membrane Science, 2024, 694: 122404–122415
https://doi.org/10.1016/j.memsci.2023.122404
44 A Ortega-Guerrero , H Sahabudeen , A Croy , A Dianat , R Dong , X Feng , G Cuniberti . Multiscale modeling strategy of 2D covalent organic frameworks confined at an air-water interface. ACS Applied Materials & Interfaces, 2021, 13(22): 26411–26420
https://doi.org/10.1021/acsami.1c05967
45 Z W Ou , Z H Liang , X Dong , F L Tan , L Gong , P Zhao , H L Wang , W Liu , Z K Zheng . Surfactants mediated synthesis of highly crystalline thin films of imine-linked covalent organic frameworks on water surface. Chinese Journal of Chemistry, 2021, 39(12): 3322–3328
https://doi.org/10.1002/cjoc.202100493
46 X Shi , D Ma , F Xu , Z Zhang , Y Wang . Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11(4): 989–996
https://doi.org/10.1039/C9SC05082E
47 H Yu , J Guan , Y Chen , Y X Sun , S Y Zhou , J F Zheng , Q F Zhang , S H Li , S B Zhang . Large-area soluble covalent organic framework oligomer coating for organic solution nanofiltration membranes. Nano Micro Small, 2023, 20(4): 2305613–2305624
48 L Zhang , W Kang , Q Ma , Y Xie , Y Jia , N Deng , Y Zhang , J Ju , B Cheng . Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, and Nd): morphology, structure, growth mechanism, and stability. Journal of the American Chemical Society, 2019, 141(33): 13134–13142
https://doi.org/10.1021/jacs.9b05355
49 S Y Wang , L Y Wang , H Cong , R Wang , J Yang , X Li , Y Zhao , H. Cong H J Wang , R Wang . et al.. A review: g-C3N4 as a new membrane material. Journal of Environmental Chemical Engineering, 2022, 10(4): 108189–108211
https://doi.org/10.1016/j.jece.2022.108189
50 F He , Z X Wang , Y X Li , S Q Peng , B Liu . The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 2020, 269(15): 118828–118839
https://doi.org/10.1016/j.apcatb.2020.118828
51 C C Chen , M Xie , L S Kong , W H Lu , Z Y Feng , J H Zhan . Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. Journal of Hazardous Materials, 2020, 390(15): 122146–122157
https://doi.org/10.1016/j.jhazmat.2020.122146
52 B Lin , M Y Xia , B R Xu , B Chong , Z H Chen , G D Yang . Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chinese Journal of Catalysis, 2022, 43(8): 2141–2172
https://doi.org/10.1016/S1872-2067(22)64110-X
53 J Q Dong , Y Zhang , M I Hussain , W J Zhou , Y Z Chen , L N Wang . g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials, 2021, 12(1): 121–134
https://doi.org/10.3390/nano12010121
54 X Zhang , X Xie , H Wang , J J Zhang , B C Pan , Y Xie . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of American Chemical Society, 2013, 135(1): 18–21
https://doi.org/10.1021/ja308249k
55 J Xu , L Zhang , R Shi , Y Zhu . Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(46): 14766–14772
https://doi.org/10.1039/c3ta13188b
56 F Dong , Y H Li , Z Y Wang , W K Ho . Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358(PARTA): 393–403
57 Y H Chen , Z M Wang , Y G Li , J Guo , L Dai , J F Zheng , S H Li , S B Zhang . Incorporating 2D porous organic polymer nanosheets into high-temperature proton-exchange membranes for low H3PO4 loss. Journal of Membrane Science, 2024, 693: 122344–122350
https://doi.org/10.1016/j.memsci.2023.122344
58 M Verma , G Bahuguna , S Singh , A Kumari , D Ghosh , H Haick , R Gupta . Porous SnO2 nanosheets for room temperature ammonia sensing in extreme humidity. Materials Horizons, 2024, 11(1): 184–195
https://doi.org/10.1039/D3MH01078C
59 Z T Li , P Zhou , Y X Zhao , W Y Jiang , B X Zhao , X S Chen , J P Wang , R Yang , C L Zuo . Ultrathin and porous CoP nanosheets as an efficient electrocatalyst for boosting hydrogen evolution behavior at a broad range of pH. International Journal of Hydrogen Energy, 2024, 51: 1279–1286
https://doi.org/10.1016/j.ijhydene.2023.09.181
60 X Y M Dong , H Y Xia , R Y Pang , E Wang , J Li . Urea with trifunctional effects: an assistant for high exposure of single-atom active sites on 2D nanosheets viastructural transformation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(9): 5422–5428
https://doi.org/10.1039/D3TA07606G
61 H B Li , C N Zhang , Q Lin , F Lin , T S Xiao , K X Yan , B Shen , H B Zhang , Y Tang , Z Z Sun . Epitaxial growth of two-dimensional MWW zeolite. Journal of the American Chemical Society, 2024, 146(12): 8520–8527
https://doi.org/10.1021/jacs.4c00162
62 Z X Zhao , J Yang , C L Wang , Y T Xue , H Wu , W L Xie , P P Wu , C Z Wang , W Xing , Y Wang . et al.. Template-free synthesis of highly porous silica-doped alumina with exceptional stability via intercalation-exfoliation of boehmite into two-dimensional nanosheets. Science China Materials, 2024, 67(1): 261–271
https://doi.org/10.1007/s40843-023-2686-y
63 H B Huang , H D Shi , P Das , J Q Qin , Y G Li , X Wang , F Su , P C Wen , S Y Li , P F Lu . et al.. The chemistry and promising applications of graphene and porous graphene materials. Advanced Functional Materials, 2020, 30(41): 1909035–1909046
https://doi.org/10.1002/adfm.201909035
64 S P Surwade , S N Smirnov , I V Vlassiouk , R R Unocic , G M Veith , S Dai , S M Mahurin . Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
https://doi.org/10.1038/nnano.2015.37
65 S L Li , W Gu , Y Q Sun , D Zou , W H Jing . Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching. Ceramics International, 2021, 47(21): 29930–29940
https://doi.org/10.1016/j.ceramint.2021.07.166
66 S Hong , J K El-Demellawi , Y Lei , Z Liu , F A Marzooqi , H A Arafat , H N Alshareef . Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano, 2022, 16(1): 792–800
https://doi.org/10.1021/acsnano.1c08347
67 J Kim , J Kang , J P Kim , J Y Kim , O Kwon , D W Kim . Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration. Carbon, 2023, 207: 162–171
https://doi.org/10.1016/j.carbon.2023.03.008
68 M Kang , D H Lee , Y M Kang , H Jung . Electron beam irradiation dose dependent physico-chemical and electrochemical properties of reduced graphene oxide for supercapacitor. Electrochimica Acta, 2015, 184: 427–435
https://doi.org/10.1016/j.electacta.2015.10.053
69 Y B Wei , Z Pastuovic , T Murphy , D B Gore . Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation. Applied Surface Science, 2020, 505: 144651–144660
https://doi.org/10.1016/j.apsusc.2019.144651
70 H N Yang , G N Chen , L Cheng , Y Liu , Y X Cheng , H J Yao , Y Liu , G P Liu , W Q Jin . Manipulating gas transport channels in graphene oxide membrane with swift heavy ion irradiation. Separation and Purification Technology, 2023, 320: 124136–124147
https://doi.org/10.1016/j.seppur.2023.124136
71 S L Li , J Lu , D Zou , L L Cui , B Chen , F Wang , J Qiu , T X Yu , Y Q Sun , W H Jing . Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation. Chemical Engineering Journal, 2023, 457: 141217–141228
https://doi.org/10.1016/j.cej.2022.141217
72 L M Robeson . The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
https://doi.org/10.1016/j.memsci.2008.04.030
73 B Comesaña-Gándara , J Chen , C G Bezzu , M L Carta , I Rose , M C Ferrari , E Esposito , A Fuoco , J N Jansen , N B Mckeown . Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9): 2733–2740
https://doi.org/10.1039/C9EE01384A
74 L M Robeson . Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
https://doi.org/10.1016/0376-7388(91)80060-J
75 Y Zhang , M Zhao , X Li , Q Xin , X Ding , L Zhao , H Ye , L Lin , H Li , Y Zhang . Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. Journal of Industrial and Engineering Chemistry, 2023, 125: 200–210
https://doi.org/10.1016/j.jiec.2023.05.029
76 Q Xin , W Shao , Q Ma , X Ye , Z Huang , B Li , S Wang , H Li , Y Zhang . Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Applied Materials & Interfaces, 2020, 12(42): 48067–48076
https://doi.org/10.1021/acsami.0c10895
77 M Zhao , J Guo , Q Xin , Y Zhang , X Li , X Ding , L Zhang , L Zhao , H Ye , H Li . et al.. Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture. Separation and Purification Technology, 2023, 324: 124512–124523
https://doi.org/10.1016/j.seppur.2023.124512
78 H W Kim , H W Yoon , S M Yoon , B M Yoo , B K Ahn , Y H Cho , H J Shin , H Yang , U Paik , S Kwon . et al.. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
https://doi.org/10.1126/science.1236098
79 S P Koenig , L D Wang , J Pellegrino , S J Bunch . Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732
https://doi.org/10.1038/nnano.2012.162
80 M S H Boutilier , D J Jang , J C Idrobo , P R Kidambi , N G Hadjiconstantinou , R Karnik . Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes. ACS Nano, 2017, 11(6): 5726–5736
https://doi.org/10.1021/acsnano.7b01231
81 T Ashirov , A O Yazaydin , A Coskun . Tuning the transport properties of gases in porous graphene membranes with controlled pore size and thickness. Advanced Materials, 2022, 34(5): 2106785–2106798
https://doi.org/10.1002/adma.202106785
82 C Van Goethem , Y Shen , H Y Chi , M Mensi , K Zhao , A Nijmeijer , P E Just , K V Agrawal . Advancing molecular sieving via Å-scale pore tuning in bottom-up graphene synthesis. ACS Nano, 2024, 18(7): 5730–5740
https://doi.org/10.1021/acsnano.3c11885
83 T Rodenas , I Luz , G Prieto , B Seoane , H Miro , A Corma , F Kapte , X Francesc . Llabrés i X, Gascon J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55
https://doi.org/10.1038/nmat4113
84 J M Wan , M J Nian , C Yang , K Ge , J J Liu , Z Q Chen , J G Duan , W Q Jin . Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642: 119991–120002
https://doi.org/10.1016/j.memsci.2021.119991
85 X Bi , Y Zhang , F Zhang , S Zhang , Z Wang , J Jin . MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS Applied Materials & Interfaces, 2020, 12(43): 49101–49110
https://doi.org/10.1021/acsami.0c14639
86 Z Yang , Y Belmabkhout , L N Mchugh , D Ao , Y Sun , S Li , Z Qiao , T D Bennett , M D Guiver , C Zhong . ZIF-62 glass foam self-supported membranes to address CH4/N2 separations. Nature Materials, 2023, 22(7): 888–894
https://doi.org/10.1038/s41563-023-01545-w
87 M Carta , R Malpass-Evans , M Croad , Y Rogan , J C Jansen , P Bernardo , F Bazzarelli , N B Mckeown . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307
https://doi.org/10.1126/science.1228032
88 Y Peng , Y S Li , Y J Ban , H Jin , W M Jiao , X L Liu , W S Yang . Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
https://doi.org/10.1126/science.1254227
89 Y Peng , Y Li , Y Ban , W S Yang . Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie, 2017, 129(33): 9889–9893
https://doi.org/10.1002/ange.201703959
90 C C Ma , G S Gao , H O Liu , Y Liu , X F Zhang . Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644: 120167–120177
https://doi.org/10.1016/j.memsci.2021.120167
91 H Song , Y Peng , C Wang , L Shu , C Y Zhu , Y L Wang , H Y He , W S Yang . Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angewandte Chemie International Edition, 2023, 62(17): e202218472–202218480
https://doi.org/10.1002/anie.202218472
92 B P Biswal , H D Chaudhari , R Banerjee , U K Kharul . Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chemistry, 2016, 22(14): 4695–4699
https://doi.org/10.1002/chem.201504836
93 X Chang , H Guo , Q Chang , Z H Tian , Y W Zhang , D Y Li , J Wang , Y T Zhang . Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation. Journal of Membrane Science, 2023, 686: 122017–122028
https://doi.org/10.1016/j.memsci.2023.122017
94 Q Xin , X Zhang , W Shao , H Li , Y Z Zhang . COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation. Journal of Membrane Science, 2023, 665: 121109–121120
https://doi.org/10.1016/j.memsci.2022.121109
95 H Fan , A Mundstock , A Feldhoff , A Knebel , J Gu , H Meng , J Caro . Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098
https://doi.org/10.1021/jacs.8b05136
96 Y Ying , M Tong , S C Ning , S K Ravi , S B Peh , S C Tan , S J Pennycook , D Zhao . Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480
https://doi.org/10.1021/jacs.9b13825
97 S Wang , Y Yang , X Liang , Y Ren , H Ma , Z Zhu , J Wang , S Zeng , S Song , X Wang . et al.. Ultrathin ionic COF Membrane via polyelectrolyte-mediated assembly for efficient CO2 separation. Advanced Functional Materials, 2023, 33(24): 2300386–2300392
https://doi.org/10.1002/adfm.202300386
98 J Fu , J Y Liu , G H Zhang , Q H Zhu , S L Wang , S Qin , L He , G H Tao . Boost of gas adsorption kinetics of covalent organic frameworks via ionic liquid solution process. Small, 2023, 19(39): 2302570–2302579
https://doi.org/10.1002/smll.202302570
99 J Y Liu , L Zhang , J Fu , S L Wang , Y R Zhou , Y H Wang , S Qin , G H Tao , L He . Mobile hydrogen-bonding donor in covalent organic framework for efficient iodine capture. Separation and Purification Technology, 2024, 331: 125664
https://doi.org/10.1016/j.seppur.2023.125664
100 Y Ying , S B Peh , H Yang , Z Q Yang , D Zhao . Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Advanced Materials, 2022, 34(25): 2104946–2104952
https://doi.org/10.1002/adma.202104946
101 J R Du , L Liu , A Chakma , X S Feng . Using poly(N,N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chemical Engineering Science, 2010, 65(16): 4672–4681
https://doi.org/10.1016/j.ces.2010.05.005
102 T M H Le , R Wang , S Sairiam . Self-protecting PVDF-PDA-TiO2 membranes towards highly efficient and prolonged dye wastewater treatment by photocatalytic membranes. Journal of Membrane Science, 2023, 683: 121789–121798
https://doi.org/10.1016/j.memsci.2023.121789
103 D I Petukhov , E A Chernova , O O Kapitanova , O V Boytsova , R G Valeev , A P Chumakov , O V Konovalov , A A Eliseev . Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577: 184–194
https://doi.org/10.1016/j.memsci.2019.01.041
104 R Takenaka , N Moriyama , H K Nagasawa , M K Kanezashi , T N Tsuru . Permeation properties of water vapor through graphene oxide/polymer substrate composite membranes. Membranes, 2023, 13(5): 533–544
https://doi.org/10.3390/membranes13050533
105 J Yu , K Ruengkajorn , D G Crivoi , C P Chen , J C Buffet , D O’Hare . High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 2019, 10(1): 2398–2408
https://doi.org/10.1038/s41467-019-10362-2
106 J J Wang , X Z Xu , J Zhang , M T Chen , S Y Dong , J B Han , M Wei . Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Applied Materials & Interfaces, 2018, 10(33): 28130–28138
https://doi.org/10.1021/acsami.8b09740
107 H J Lee , Y M Shirke , J Kim , H J Yu , C H Yoo , S Back , J D Jeon , J S Lee . Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: a synergistic effect of hydrophilic modification and defect engineering. Journal of Membrane Science, 2023, 665: 121096–121105
https://doi.org/10.1016/j.memsci.2022.121096
108 R Deng , W Han , K L Yeung . Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catalysis Today, 2019, 331: 12–17
https://doi.org/10.1016/j.cattod.2018.05.016
109 D Cohen-Tanugi , J C Grossman . Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
https://doi.org/10.1021/nl3012853
110 K Celebi , J Buchheim , R M Wyss , A Droudian , P Gasser , I Shorubalko , J I Kye , C Lee , H G Park . Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
https://doi.org/10.1126/science.1249097
111 S C O’Hern , M S H Boutilier , J C Idrobo , Y Song , J Kong , T Laoui , M Atieh , R Karnik . Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241
https://doi.org/10.1021/nl404118f
112 O Akhavan . Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano, 2010, 4(7): 4174–4180
https://doi.org/10.1021/nn1007429
113 Y Yang , X Yang , L Liang , Y Y Gao , H N Cheng , X M Li , M C Zou , R Z Ma , Q Yuan , X F Duan . Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062
https://doi.org/10.1126/science.aau5321
114 J Guan , X You , B Shi , Y Liu , J Yuan , C Yang , X Pang , H Wu , J Shen , C Fan . et al.. Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of Membrane Science, 2021, 638: 119706–119716
https://doi.org/10.1016/j.memsci.2021.119706
115 Y Wang , L Li , Y Wei , J Xue , H Chen , L Ding , J Caro , H Wang . Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980
https://doi.org/10.1002/anie.201701288
116 Y C Liu , D Q Xie , M R Song , L Z Jiang , G Fu , B Liu , J Y Li . Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138
https://doi.org/10.1016/j.carbon.2018.08.043
117 J Ran , T Pan , Y Y Wu , C Q Chu , P Cui , P P Zhang , X Y Ai , C F Fu , Z J Yang , T W Xu . Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468
https://doi.org/10.1002/anie.201908786
118 Y Y Wu , C F Fu , Q Huang , P P Zhang , P Cui , J Ran , J L Yang , T W Xu . 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 2021, 15(4): 7586–7595
https://doi.org/10.1021/acsnano.1c01105
119 S Yuan , X Li , J Zhu , G Zhang , P Van Puyvelde , B Van der Bruggen . Covalent organic frameworks for membrane separation. Chemical Society Reviews, 2019, 48(10): 2665–2681
https://doi.org/10.1039/C8CS00919H
120 X Xu , X Wu , K Xu , H Xu , H Z Chen , N Huang . Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14(1): 3360–3368
https://doi.org/10.1038/s41467-023-39126-9
121 Y Li , Q X Wu , X H Guo , M C Zhang , B Chen , G Y Wei , X Li , X F Li , S J Li , L J Ma . Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11(1): 599–609
https://doi.org/10.1038/s41467-019-14056-7
122 F M Sheng , B Wu , X Y Li , T T Xu , M A Shehzad , X X Wang , L Ge , H T Wang , T W Xu . Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Advanced Materials, 2021, 33(44): 2104404–2104409
https://doi.org/10.1002/adma.202104404
123 A K Xiao , X S Shi , Z Zhang , C C Yin , S Xiong , Y Wang . Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624: 119122–119132
https://doi.org/10.1016/j.memsci.2021.119122
124 Y Q Zhang , J Guo , G Han , Y P Bai , Q H Ge , J Ma , C H Lau , L Shao . Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): 8706–8712
https://doi.org/10.1126/sciadv.abe8706
125 B Sapkota , W T Liang , A Vahidmohammadi , R Karnik , A Noy , M Wanunu . High permeability sub-nanometre sieve composite MoS2 membranes. Nature Communications, 2020, 11(1): 2247–2255
126 C Kim , D Y Koh , Y J Lee , J Choi , H S Cho , M Choi . Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration. Science Advances, 2023, 9(6): 7871–7879
https://doi.org/10.1126/sciadv.ade7871
127 S R Han , Y F Xie , Q P Xin , J Lv , Y L Zhang , F K Wang , X J Fu , H Li , L Z Zhao , H Ye . et al.. High permeability dual-channel membranes based on porous fluorine-cerium nanosheets for molecular sieving. Journal of Membrane Science, 2023, 666: 121126–121136
https://doi.org/10.1016/j.memsci.2022.121126
128 Y Yu , X J Wu , M Zhao , Q Ma , J Chen , B Chen , M Sindoro , J Yang , S Han , Q Lu . et al.. Anodized aluminum oxide templated synthesis of metal-organic frameworks used as membrane reactors. Angewandte Chemie International Edition, 2017, 56(2): 578–581
https://doi.org/10.1002/anie.201610291
129 J Xue , J M Gao , M J Xu , Y Q Zong , M X Wang , S S Ma . Super wetting porous g-C3N4 nanosheets coated PVDF membrane for emulsified oil/water separation and aqueous organic pollutant elimination. Advanced Materials Interfaces, 2021, 8(19): 2100962–2100970
https://doi.org/10.1002/admi.202100962
130 R Li , Y Ren , P Zhao , J Wang , J D Liu , Y T Zhang . Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 2019, 365: 606–614
https://doi.org/10.1016/j.jhazmat.2018.11.033
131 K G Zhou , D Mcmanus , E Prestat , X Zhong , Y Y Shin , H L Zhang , S J Haigh , C Casiraghi . Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(30): 11666–11671
https://doi.org/10.1039/C5TA09152G
132 X J Li , Y Liu , Q H Liu , Z L Zheng , H X Guo . Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study. RSC Advances, 2022, 12(12): 7189–7198
https://doi.org/10.1039/D1RA09061E
133 E G Ajebe , C C Hu , G Lugito , C P Hu , W S Hung , K R Lee , J Y Lai . Investigating the impact of metal ion variations in terephthalate metal-organic frameworks on the organic solvent nanofiltration performance of mixed matrix membranes. Journal of Membrane Science, 2024, 700: 122715–122725
https://doi.org/10.1016/j.memsci.2024.122715
134 M Wu , X X Fu , J Li , W Q Zhao , X B Li . SWCNTs-channeled MOF nanosheet membrane for high-efficient organic solvent nanofiltration. Separation and Purification Technology, 2024, 338: 126328–126339
https://doi.org/10.1016/j.seppur.2024.126328
135 L Chen , X Zhou , R Meng , D Li , D Li , X Li , K Zhang , Q Ji , Y Li , Y Xia , L Ci . Stable antifouling membranes based on graphene oxide nanosheets for organic solvent nanofiltration. ACS Applied Nano Materials, 2024, 7(2): 1929–1939
https://doi.org/10.1021/acsanm.3c05197
136 G Li , Y Liu , Z He , K Shi , F Liu . Retrievable ultrafast covalent triazine framework membranes for organic solvent nanofiltration. Chemical Engineering Journal, 2024, 484: 149488–149499
https://doi.org/10.1016/j.cej.2024.149488
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed