State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.
Z Ahmed , F Rehman , U Ali , A Ali , M Iqbal , K H Thebo , A Ali , M Iqbal , K H Thebo . Recent advances in MXene-based separation membranes. ChemBioEng Reviews, 2021, 8(2): 110–120 https://doi.org/10.1002/cben.202000026
2
S P Kaldis , G C Kapantaidakis , G P Sakellaropoulos . Polymer membrane conditioning and design for enhanced CO2-N2 separation. Coal Science and Technology, 1995, 24: 1927–1930 https://doi.org/10.1016/S0167-9449(06)80197-7
3
J R Werber , C O Osuji , M Elimelech . Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018–16034 https://doi.org/10.1038/natrevmats.2016.18
4
L Wang , M S H Boutilier , P R Kidambi , D Jang , N Hadjiconstantinou , R Karnik . Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522 https://doi.org/10.1038/nnano.2017.72
5
W J Koros , C Zhang . Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297 https://doi.org/10.1038/nmat4805
6
D S Sholl , R P Lively . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437 https://doi.org/10.1038/532435a
7
W Wang , Y Y Wei , J Fan , J H Cai , Z Lu , L Ding , H H Wang . Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15(4): 793–819 https://doi.org/10.1007/s11705-020-2016-8
8
A Giwa , M Ahmed , S W Hasan . Polymers for membrane filtration in water purification. Polymeric Materials for Clean Water, 2019, 16: 167–190 https://doi.org/10.1007/978-3-030-00743-0_8
9
H B Park , J Kamcev , L M Robeson , M Elimelech , B D Freeman . Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530–0540
10
Y Cheng , Y Pu , D Zhao . Two-dimensional membranes: new paradigms for high-performance separation membranes. Chemistry, an Asian Journal, 2020, 15(15): 2241–2270 https://doi.org/10.1002/asia.202000013
11
K S Novoselov , A K Geim , S V Morozov , D Jiang , Y Zhang , S V Dubonos , I V Grigorieva , A A Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669 https://doi.org/10.1126/science.1102896
12
H Bux , F Liang , Y Li , J Cravillon , M Wiebcke , J Caro . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001 https://doi.org/10.1021/ja907359t
13
Y T Qin , Y Wan , J Guo , M T Zhao . Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702 https://doi.org/10.1016/j.cclet.2021.07.013
14
A P Côté , A I Benin , N W Ockwig , M O’keeffe , A J Matzger , O M. Matzger A J Yaghi , O M Yaghi . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170 https://doi.org/10.1126/science.1120411
15
M Alhabeb , K Maleski , B Anasori , P Lelyukh , L Clark , S Sin , Y Gogotsi . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644 https://doi.org/10.1021/acs.chemmater.7b02847
16
X Zhang , X Xie , H Wang , J Zhang , B Pan , Y Xie . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 2013, 135(1): 18–21 https://doi.org/10.1021/ja308249k
17
Q Wang , D O’hare . Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155 https://doi.org/10.1021/cr200434v
L Ding , Y Y Wei , Y J Wang , H B Chen , J Caro , H H Wang . A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829 https://doi.org/10.1002/anie.201609306
20
T F Ajibade , H L Tian , K H Lasisi , K S Zhang . Bio-inspired PDA@WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye. Separation and Purification Technology, 2022, 299: 12711–12722 https://doi.org/10.1016/j.seppur.2022.121711
21
S Q Han , W H You , S H Lv , C J Du , X Zhang , E Zhang , J Y Zhu , Y T Zhang . Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance. Desalination, 2023, 548: 116300–116311 https://doi.org/10.1016/j.desal.2022.116300
22
M Kunimatsu , K Nakagawa , T Yoshioka , T Shintani , T Yasui , E Kamio , S C E Tsang , J X Li , H Matsuyama . Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117579–117608 https://doi.org/10.1016/j.memsci.2019.117598
23
Y Liu , X P Wang , Z A Zong , R J Lin , X Y Zhang , F S Chen , W D Ding , L L Zhang , X M Meng , J W Hou . Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. Journal of Membrane Science, 2022, 653: 120520–120531 https://doi.org/10.1016/j.memsci.2022.120520
24
H Liu , B Li , P Zhao , R M Xu , C Y Tang , W L Song , Z A Habib , X H Wang . Fabrication of novel thin-film composite membrane based on ultrathin metal-organic framework interlayer for enhancing forward osmosis performance. Chinese Chemical Letters, 2023, 34(12): 108369–108379 https://doi.org/10.1016/j.cclet.2023.108369
25
M Liu , P A Gurr , Q Fu , P A Webley , G G Qiao . Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196 https://doi.org/10.1039/C8TA09070J
26
P Y Wang , Y Peng , C Y Zhu , R Yao , H L Song , L Kun , W S Yang . Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angewandte Chemie International Edition, 2021, 60(35): 19047–19052 https://doi.org/10.1002/anie.202106346
27
P Manchanda , S Chisca , L Upadhyaya , V E Musteata , M Carrington , S P Nunes . Diffusion-induced in situ growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25802–25807 https://doi.org/10.1039/C9TA11191C
28
F Wang , S Han , Y Zhang , L Gao , X Li , L Zhao , H Ye , H Li , Q Xin , Y Zhang . Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets. Communications Chemistry, 2022, 5(1): 2065–2075 https://doi.org/10.1038/s42004-022-00681-9
29
J Wang , P Yang , L Liu , B Zheng , J Jiang , J Ma , Y Yan , S Yang , L Yang , Q K Liu . et al.. Facile exfoliation of two-dimensional crystalline monolayer nanosheets from an amorphous metal-organic framework. Chinese Chemical Society Chemistry, 2022, 4(6): 1879–1888 https://doi.org/10.31635/ccschem.021.202101208
30
K Zhang , Z B Fang , Q Q Huang , A A Zhang , J L Li , J Y Li , Y Zhang , T Zhang , R Cao . Exfoliation of a two-dimensional metal-organic framework for enhanced photocatalytic CO2 reduction. Inorganic Chemistry, 2023, 62(22): 8472–8477 https://doi.org/10.1021/acs.inorgchem.3c01142
31
B Shao , X L He , D Huang , Y L Xiang , Y Luo , Y M Wei , L B Jiang , R K Huang , M Dong , J Huang . Oriented exfoliating 3D metal-organic frameworks into ultrathin metal-organic nanosheets with different crystal faces. Advanced Functional Materials, 2024, 2315911 https://doi.org/10.1002/adfm.202315911
32
H N Abdelhamid . High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9(1): 104404–104415 https://doi.org/10.1016/j.jece.2020.104404
33
M Yin , Z Li , L Wang , S K Tang . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550–123559 https://doi.org/10.1016/j.seppur.2023.123550
34
S K Jeong , J Y Jeong , S Lim , W S Kim , H T Kwon , J Kim . Mixed matrix membranes incorporating two-dimensional ZIF-8 nanosheets for enhanced CO2/N2 separation. Chemical Engineering Journal, 2024, 481: 148294–148305 https://doi.org/10.1016/j.cej.2023.148294
35
J Yang , L Kong , C Huang , C C Wang , S H Wei , L Zhou . Liquid-liquid interfacial approach for rapid synthesis of well-crystalline two-dimensional metal-organic frameworks for nitro reduction. Chemical Engineering Journal, 2024, 485: 149969–149979 https://doi.org/10.1016/j.cej.2024.149969
36
H Lu , S Zhu . Interfacial synthesis of free-standing metal-organic framework membranes. European Journal of Inorganic Chemistry, 2013, 2013(8): 1294–1300 https://doi.org/10.1002/ejic.201201009
37
L A Cao , M Wei , X Guo , D L Wang , L Chen , J Guo . Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing. Ionics, 2024, 30(4): 2375–2385 https://doi.org/10.1007/s11581-024-05406-7
38
Y Y Guo , Q Zhang , S Q Gao , H Y Wang , Z Y Li , J K Qiu , Y Zhao , Z M Liu , J J Wang . Bi-functional ionic liquids facilitate liquid-phase exfoliation of porphyrin-based covalent organic frameworks in water for highly efficient CO2 photoreduction. Green Chemistry, 2022, 24(24): 9530–9541 https://doi.org/10.1039/D2GC03194A
39
J Yao , C Liu , X Liu , J Guo , S Zhang , J Zheng , S Li . Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864–117875 https://doi.org/10.1016/j.memsci.2020.117864
40
T Wang , R J Zhang , P D Zhai , M J Li , X Y Liu , C X Li . Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(2): 1292–1299 https://doi.org/10.1039/D3TA06312G
41
R Liu , Q Yan , Y Tang , R Liu , L Huang , Q Shuai . NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. Journal of Hazardous Materials, 2022, 421: 126702–126714 https://doi.org/10.1016/j.jhazmat.2021.126702
42
C Ding , M Breunig , J Timm , R Marschall , J Senker , S Agarwal . Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Advanced Functional Materials, 2021, 31(49): 2106507–2106515 https://doi.org/10.1002/adfm.202106507
43
J Chen , R Li , S Liu , J Zhang , X Wu , J Wang . Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration. Journal of Membrane Science, 2024, 694: 122404–122415 https://doi.org/10.1016/j.memsci.2023.122404
44
A Ortega-Guerrero , H Sahabudeen , A Croy , A Dianat , R Dong , X Feng , G Cuniberti . Multiscale modeling strategy of 2D covalent organic frameworks confined at an air-water interface. ACS Applied Materials & Interfaces, 2021, 13(22): 26411–26420 https://doi.org/10.1021/acsami.1c05967
45
Z W Ou , Z H Liang , X Dong , F L Tan , L Gong , P Zhao , H L Wang , W Liu , Z K Zheng . Surfactants mediated synthesis of highly crystalline thin films of imine-linked covalent organic frameworks on water surface. Chinese Journal of Chemistry, 2021, 39(12): 3322–3328 https://doi.org/10.1002/cjoc.202100493
46
X Shi , D Ma , F Xu , Z Zhang , Y Wang . Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11(4): 989–996 https://doi.org/10.1039/C9SC05082E
47
H Yu , J Guan , Y Chen , Y X Sun , S Y Zhou , J F Zheng , Q F Zhang , S H Li , S B Zhang . Large-area soluble covalent organic framework oligomer coating for organic solution nanofiltration membranes. Nano Micro Small, 2023, 20(4): 2305613–2305624
48
L Zhang , W Kang , Q Ma , Y Xie , Y Jia , N Deng , Y Zhang , J Ju , B Cheng . Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, and Nd): morphology, structure, growth mechanism, and stability. Journal of the American Chemical Society, 2019, 141(33): 13134–13142 https://doi.org/10.1021/jacs.9b05355
49
S Y Wang , L Y Wang , H Cong , R Wang , J Yang , X Li , Y Zhao , H. Cong H J Wang , R Wang . et al.. A review: g-C3N4 as a new membrane material. Journal of Environmental Chemical Engineering, 2022, 10(4): 108189–108211 https://doi.org/10.1016/j.jece.2022.108189
50
F He , Z X Wang , Y X Li , S Q Peng , B Liu . The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 2020, 269(15): 118828–118839 https://doi.org/10.1016/j.apcatb.2020.118828
51
C C Chen , M Xie , L S Kong , W H Lu , Z Y Feng , J H Zhan . Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. Journal of Hazardous Materials, 2020, 390(15): 122146–122157 https://doi.org/10.1016/j.jhazmat.2020.122146
52
B Lin , M Y Xia , B R Xu , B Chong , Z H Chen , G D Yang . Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chinese Journal of Catalysis, 2022, 43(8): 2141–2172 https://doi.org/10.1016/S1872-2067(22)64110-X
53
J Q Dong , Y Zhang , M I Hussain , W J Zhou , Y Z Chen , L N Wang . g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials, 2021, 12(1): 121–134 https://doi.org/10.3390/nano12010121
54
X Zhang , X Xie , H Wang , J J Zhang , B C Pan , Y Xie . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of American Chemical Society, 2013, 135(1): 18–21 https://doi.org/10.1021/ja308249k
55
J Xu , L Zhang , R Shi , Y Zhu . Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(46): 14766–14772 https://doi.org/10.1039/c3ta13188b
56
F Dong , Y H Li , Z Y Wang , W K Ho . Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358(PARTA): 393–403
57
Y H Chen , Z M Wang , Y G Li , J Guo , L Dai , J F Zheng , S H Li , S B Zhang . Incorporating 2D porous organic polymer nanosheets into high-temperature proton-exchange membranes for low H3PO4 loss. Journal of Membrane Science, 2024, 693: 122344–122350 https://doi.org/10.1016/j.memsci.2023.122344
58
M Verma , G Bahuguna , S Singh , A Kumari , D Ghosh , H Haick , R Gupta . Porous SnO2 nanosheets for room temperature ammonia sensing in extreme humidity. Materials Horizons, 2024, 11(1): 184–195 https://doi.org/10.1039/D3MH01078C
59
Z T Li , P Zhou , Y X Zhao , W Y Jiang , B X Zhao , X S Chen , J P Wang , R Yang , C L Zuo . Ultrathin and porous CoP nanosheets as an efficient electrocatalyst for boosting hydrogen evolution behavior at a broad range of pH. International Journal of Hydrogen Energy, 2024, 51: 1279–1286 https://doi.org/10.1016/j.ijhydene.2023.09.181
60
X Y M Dong , H Y Xia , R Y Pang , E Wang , J Li . Urea with trifunctional effects: an assistant for high exposure of single-atom active sites on 2D nanosheets viastructural transformation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(9): 5422–5428 https://doi.org/10.1039/D3TA07606G
61
H B Li , C N Zhang , Q Lin , F Lin , T S Xiao , K X Yan , B Shen , H B Zhang , Y Tang , Z Z Sun . Epitaxial growth of two-dimensional MWW zeolite. Journal of the American Chemical Society, 2024, 146(12): 8520–8527 https://doi.org/10.1021/jacs.4c00162
62
Z X Zhao , J Yang , C L Wang , Y T Xue , H Wu , W L Xie , P P Wu , C Z Wang , W Xing , Y Wang . et al.. Template-free synthesis of highly porous silica-doped alumina with exceptional stability via intercalation-exfoliation of boehmite into two-dimensional nanosheets. Science China Materials, 2024, 67(1): 261–271 https://doi.org/10.1007/s40843-023-2686-y
63
H B Huang , H D Shi , P Das , J Q Qin , Y G Li , X Wang , F Su , P C Wen , S Y Li , P F Lu . et al.. The chemistry and promising applications of graphene and porous graphene materials. Advanced Functional Materials, 2020, 30(41): 1909035–1909046 https://doi.org/10.1002/adfm.201909035
64
S P Surwade , S N Smirnov , I V Vlassiouk , R R Unocic , G M Veith , S Dai , S M Mahurin . Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464 https://doi.org/10.1038/nnano.2015.37
65
S L Li , W Gu , Y Q Sun , D Zou , W H Jing . Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching. Ceramics International, 2021, 47(21): 29930–29940 https://doi.org/10.1016/j.ceramint.2021.07.166
66
S Hong , J K El-Demellawi , Y Lei , Z Liu , F A Marzooqi , H A Arafat , H N Alshareef . Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano, 2022, 16(1): 792–800 https://doi.org/10.1021/acsnano.1c08347
67
J Kim , J Kang , J P Kim , J Y Kim , O Kwon , D W Kim . Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration. Carbon, 2023, 207: 162–171 https://doi.org/10.1016/j.carbon.2023.03.008
68
M Kang , D H Lee , Y M Kang , H Jung . Electron beam irradiation dose dependent physico-chemical and electrochemical properties of reduced graphene oxide for supercapacitor. Electrochimica Acta, 2015, 184: 427–435 https://doi.org/10.1016/j.electacta.2015.10.053
69
Y B Wei , Z Pastuovic , T Murphy , D B Gore . Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation. Applied Surface Science, 2020, 505: 144651–144660 https://doi.org/10.1016/j.apsusc.2019.144651
70
H N Yang , G N Chen , L Cheng , Y Liu , Y X Cheng , H J Yao , Y Liu , G P Liu , W Q Jin . Manipulating gas transport channels in graphene oxide membrane with swift heavy ion irradiation. Separation and Purification Technology, 2023, 320: 124136–124147 https://doi.org/10.1016/j.seppur.2023.124136
71
S L Li , J Lu , D Zou , L L Cui , B Chen , F Wang , J Qiu , T X Yu , Y Q Sun , W H Jing . Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation. Chemical Engineering Journal, 2023, 457: 141217–141228 https://doi.org/10.1016/j.cej.2022.141217
B Comesaña-Gándara , J Chen , C G Bezzu , M L Carta , I Rose , M C Ferrari , E Esposito , A Fuoco , J N Jansen , N B Mckeown . Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9): 2733–2740 https://doi.org/10.1039/C9EE01384A
74
L M Robeson . Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185 https://doi.org/10.1016/0376-7388(91)80060-J
75
Y Zhang , M Zhao , X Li , Q Xin , X Ding , L Zhao , H Ye , L Lin , H Li , Y Zhang . Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. Journal of Industrial and Engineering Chemistry, 2023, 125: 200–210 https://doi.org/10.1016/j.jiec.2023.05.029
76
Q Xin , W Shao , Q Ma , X Ye , Z Huang , B Li , S Wang , H Li , Y Zhang . Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Applied Materials & Interfaces, 2020, 12(42): 48067–48076 https://doi.org/10.1021/acsami.0c10895
77
M Zhao , J Guo , Q Xin , Y Zhang , X Li , X Ding , L Zhang , L Zhao , H Ye , H Li . et al.. Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture. Separation and Purification Technology, 2023, 324: 124512–124523 https://doi.org/10.1016/j.seppur.2023.124512
78
H W Kim , H W Yoon , S M Yoon , B M Yoo , B K Ahn , Y H Cho , H J Shin , H Yang , U Paik , S Kwon . et al.. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95 https://doi.org/10.1126/science.1236098
79
S P Koenig , L D Wang , J Pellegrino , S J Bunch . Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732 https://doi.org/10.1038/nnano.2012.162
80
M S H Boutilier , D J Jang , J C Idrobo , P R Kidambi , N G Hadjiconstantinou , R Karnik . Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes. ACS Nano, 2017, 11(6): 5726–5736 https://doi.org/10.1021/acsnano.7b01231
81
T Ashirov , A O Yazaydin , A Coskun . Tuning the transport properties of gases in porous graphene membranes with controlled pore size and thickness. Advanced Materials, 2022, 34(5): 2106785–2106798 https://doi.org/10.1002/adma.202106785
82
C Van Goethem , Y Shen , H Y Chi , M Mensi , K Zhao , A Nijmeijer , P E Just , K V Agrawal . Advancing molecular sieving via Å-scale pore tuning in bottom-up graphene synthesis. ACS Nano, 2024, 18(7): 5730–5740 https://doi.org/10.1021/acsnano.3c11885
83
T Rodenas , I Luz , G Prieto , B Seoane , H Miro , A Corma , F Kapte , X Francesc . Llabrés i X, Gascon J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55 https://doi.org/10.1038/nmat4113
84
J M Wan , M J Nian , C Yang , K Ge , J J Liu , Z Q Chen , J G Duan , W Q Jin . Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642: 119991–120002 https://doi.org/10.1016/j.memsci.2021.119991
85
X Bi , Y Zhang , F Zhang , S Zhang , Z Wang , J Jin . MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS Applied Materials & Interfaces, 2020, 12(43): 49101–49110 https://doi.org/10.1021/acsami.0c14639
86
Z Yang , Y Belmabkhout , L N Mchugh , D Ao , Y Sun , S Li , Z Qiao , T D Bennett , M D Guiver , C Zhong . ZIF-62 glass foam self-supported membranes to address CH4/N2 separations. Nature Materials, 2023, 22(7): 888–894 https://doi.org/10.1038/s41563-023-01545-w
87
M Carta , R Malpass-Evans , M Croad , Y Rogan , J C Jansen , P Bernardo , F Bazzarelli , N B Mckeown . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307 https://doi.org/10.1126/science.1228032
88
Y Peng , Y S Li , Y J Ban , H Jin , W M Jiao , X L Liu , W S Yang . Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359 https://doi.org/10.1126/science.1254227
89
Y Peng , Y Li , Y Ban , W S Yang . Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie, 2017, 129(33): 9889–9893 https://doi.org/10.1002/ange.201703959
90
C C Ma , G S Gao , H O Liu , Y Liu , X F Zhang . Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644: 120167–120177 https://doi.org/10.1016/j.memsci.2021.120167
91
H Song , Y Peng , C Wang , L Shu , C Y Zhu , Y L Wang , H Y He , W S Yang . Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angewandte Chemie International Edition, 2023, 62(17): e202218472–202218480 https://doi.org/10.1002/anie.202218472
92
B P Biswal , H D Chaudhari , R Banerjee , U K Kharul . Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chemistry, 2016, 22(14): 4695–4699 https://doi.org/10.1002/chem.201504836
93
X Chang , H Guo , Q Chang , Z H Tian , Y W Zhang , D Y Li , J Wang , Y T Zhang . Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation. Journal of Membrane Science, 2023, 686: 122017–122028 https://doi.org/10.1016/j.memsci.2023.122017
94
Q Xin , X Zhang , W Shao , H Li , Y Z Zhang . COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation. Journal of Membrane Science, 2023, 665: 121109–121120 https://doi.org/10.1016/j.memsci.2022.121109
95
H Fan , A Mundstock , A Feldhoff , A Knebel , J Gu , H Meng , J Caro . Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098 https://doi.org/10.1021/jacs.8b05136
96
Y Ying , M Tong , S C Ning , S K Ravi , S B Peh , S C Tan , S J Pennycook , D Zhao . Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480 https://doi.org/10.1021/jacs.9b13825
97
S Wang , Y Yang , X Liang , Y Ren , H Ma , Z Zhu , J Wang , S Zeng , S Song , X Wang . et al.. Ultrathin ionic COF Membrane via polyelectrolyte-mediated assembly for efficient CO2 separation. Advanced Functional Materials, 2023, 33(24): 2300386–2300392 https://doi.org/10.1002/adfm.202300386
98
J Fu , J Y Liu , G H Zhang , Q H Zhu , S L Wang , S Qin , L He , G H Tao . Boost of gas adsorption kinetics of covalent organic frameworks via ionic liquid solution process. Small, 2023, 19(39): 2302570–2302579 https://doi.org/10.1002/smll.202302570
99
J Y Liu , L Zhang , J Fu , S L Wang , Y R Zhou , Y H Wang , S Qin , G H Tao , L He . Mobile hydrogen-bonding donor in covalent organic framework for efficient iodine capture. Separation and Purification Technology, 2024, 331: 125664 https://doi.org/10.1016/j.seppur.2023.125664
100
Y Ying , S B Peh , H Yang , Z Q Yang , D Zhao . Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Advanced Materials, 2022, 34(25): 2104946–2104952 https://doi.org/10.1002/adma.202104946
101
J R Du , L Liu , A Chakma , X S Feng . Using poly(N,N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chemical Engineering Science, 2010, 65(16): 4672–4681 https://doi.org/10.1016/j.ces.2010.05.005
102
T M H Le , R Wang , S Sairiam . Self-protecting PVDF-PDA-TiO2 membranes towards highly efficient and prolonged dye wastewater treatment by photocatalytic membranes. Journal of Membrane Science, 2023, 683: 121789–121798 https://doi.org/10.1016/j.memsci.2023.121789
103
D I Petukhov , E A Chernova , O O Kapitanova , O V Boytsova , R G Valeev , A P Chumakov , O V Konovalov , A A Eliseev . Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577: 184–194 https://doi.org/10.1016/j.memsci.2019.01.041
104
R Takenaka , N Moriyama , H K Nagasawa , M K Kanezashi , T N Tsuru . Permeation properties of water vapor through graphene oxide/polymer substrate composite membranes. Membranes, 2023, 13(5): 533–544 https://doi.org/10.3390/membranes13050533
105
J Yu , K Ruengkajorn , D G Crivoi , C P Chen , J C Buffet , D O’Hare . High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 2019, 10(1): 2398–2408 https://doi.org/10.1038/s41467-019-10362-2
106
J J Wang , X Z Xu , J Zhang , M T Chen , S Y Dong , J B Han , M Wei . Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Applied Materials & Interfaces, 2018, 10(33): 28130–28138 https://doi.org/10.1021/acsami.8b09740
107
H J Lee , Y M Shirke , J Kim , H J Yu , C H Yoo , S Back , J D Jeon , J S Lee . Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: a synergistic effect of hydrophilic modification and defect engineering. Journal of Membrane Science, 2023, 665: 121096–121105 https://doi.org/10.1016/j.memsci.2022.121096
108
R Deng , W Han , K L Yeung . Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catalysis Today, 2019, 331: 12–17 https://doi.org/10.1016/j.cattod.2018.05.016
109
D Cohen-Tanugi , J C Grossman . Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608 https://doi.org/10.1021/nl3012853
110
K Celebi , J Buchheim , R M Wyss , A Droudian , P Gasser , I Shorubalko , J I Kye , C Lee , H G Park . Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292 https://doi.org/10.1126/science.1249097
111
S C O’Hern , M S H Boutilier , J C Idrobo , Y Song , J Kong , T Laoui , M Atieh , R Karnik . Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241 https://doi.org/10.1021/nl404118f
Y Yang , X Yang , L Liang , Y Y Gao , H N Cheng , X M Li , M C Zou , R Z Ma , Q Yuan , X F Duan . Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062 https://doi.org/10.1126/science.aau5321
114
J Guan , X You , B Shi , Y Liu , J Yuan , C Yang , X Pang , H Wu , J Shen , C Fan . et al.. Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of Membrane Science, 2021, 638: 119706–119716 https://doi.org/10.1016/j.memsci.2021.119706
115
Y Wang , L Li , Y Wei , J Xue , H Chen , L Ding , J Caro , H Wang . Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980 https://doi.org/10.1002/anie.201701288
116
Y C Liu , D Q Xie , M R Song , L Z Jiang , G Fu , B Liu , J Y Li . Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138 https://doi.org/10.1016/j.carbon.2018.08.043
117
J Ran , T Pan , Y Y Wu , C Q Chu , P Cui , P P Zhang , X Y Ai , C F Fu , Z J Yang , T W Xu . Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468 https://doi.org/10.1002/anie.201908786
118
Y Y Wu , C F Fu , Q Huang , P P Zhang , P Cui , J Ran , J L Yang , T W Xu . 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 2021, 15(4): 7586–7595 https://doi.org/10.1021/acsnano.1c01105
119
S Yuan , X Li , J Zhu , G Zhang , P Van Puyvelde , B Van der Bruggen . Covalent organic frameworks for membrane separation. Chemical Society Reviews, 2019, 48(10): 2665–2681 https://doi.org/10.1039/C8CS00919H
120
X Xu , X Wu , K Xu , H Xu , H Z Chen , N Huang . Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14(1): 3360–3368 https://doi.org/10.1038/s41467-023-39126-9
121
Y Li , Q X Wu , X H Guo , M C Zhang , B Chen , G Y Wei , X Li , X F Li , S J Li , L J Ma . Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11(1): 599–609 https://doi.org/10.1038/s41467-019-14056-7
122
F M Sheng , B Wu , X Y Li , T T Xu , M A Shehzad , X X Wang , L Ge , H T Wang , T W Xu . Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Advanced Materials, 2021, 33(44): 2104404–2104409 https://doi.org/10.1002/adma.202104404
123
A K Xiao , X S Shi , Z Zhang , C C Yin , S Xiong , Y Wang . Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624: 119122–119132 https://doi.org/10.1016/j.memsci.2021.119122
124
Y Q Zhang , J Guo , G Han , Y P Bai , Q H Ge , J Ma , C H Lau , L Shao . Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): 8706–8712 https://doi.org/10.1126/sciadv.abe8706
125
B Sapkota , W T Liang , A Vahidmohammadi , R Karnik , A Noy , M Wanunu . High permeability sub-nanometre sieve composite MoS2 membranes. Nature Communications, 2020, 11(1): 2247–2255
126
C Kim , D Y Koh , Y J Lee , J Choi , H S Cho , M Choi . Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration. Science Advances, 2023, 9(6): 7871–7879 https://doi.org/10.1126/sciadv.ade7871
127
S R Han , Y F Xie , Q P Xin , J Lv , Y L Zhang , F K Wang , X J Fu , H Li , L Z Zhao , H Ye . et al.. High permeability dual-channel membranes based on porous fluorine-cerium nanosheets for molecular sieving. Journal of Membrane Science, 2023, 666: 121126–121136 https://doi.org/10.1016/j.memsci.2022.121126
128
Y Yu , X J Wu , M Zhao , Q Ma , J Chen , B Chen , M Sindoro , J Yang , S Han , Q Lu . et al.. Anodized aluminum oxide templated synthesis of metal-organic frameworks used as membrane reactors. Angewandte Chemie International Edition, 2017, 56(2): 578–581 https://doi.org/10.1002/anie.201610291
129
J Xue , J M Gao , M J Xu , Y Q Zong , M X Wang , S S Ma . Super wetting porous g-C3N4 nanosheets coated PVDF membrane for emulsified oil/water separation and aqueous organic pollutant elimination. Advanced Materials Interfaces, 2021, 8(19): 2100962–2100970 https://doi.org/10.1002/admi.202100962
130
R Li , Y Ren , P Zhao , J Wang , J D Liu , Y T Zhang . Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 2019, 365: 606–614 https://doi.org/10.1016/j.jhazmat.2018.11.033
131
K G Zhou , D Mcmanus , E Prestat , X Zhong , Y Y Shin , H L Zhang , S J Haigh , C Casiraghi . Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(30): 11666–11671 https://doi.org/10.1039/C5TA09152G
132
X J Li , Y Liu , Q H Liu , Z L Zheng , H X Guo . Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study. RSC Advances, 2022, 12(12): 7189–7198 https://doi.org/10.1039/D1RA09061E
133
E G Ajebe , C C Hu , G Lugito , C P Hu , W S Hung , K R Lee , J Y Lai . Investigating the impact of metal ion variations in terephthalate metal-organic frameworks on the organic solvent nanofiltration performance of mixed matrix membranes. Journal of Membrane Science, 2024, 700: 122715–122725 https://doi.org/10.1016/j.memsci.2024.122715
134
M Wu , X X Fu , J Li , W Q Zhao , X B Li . SWCNTs-channeled MOF nanosheet membrane for high-efficient organic solvent nanofiltration. Separation and Purification Technology, 2024, 338: 126328–126339 https://doi.org/10.1016/j.seppur.2024.126328
135
L Chen , X Zhou , R Meng , D Li , D Li , X Li , K Zhang , Q Ji , Y Li , Y Xia , L Ci . Stable antifouling membranes based on graphene oxide nanosheets for organic solvent nanofiltration. ACS Applied Nano Materials, 2024, 7(2): 1929–1939 https://doi.org/10.1021/acsanm.3c05197
136
G Li , Y Liu , Z He , K Shi , F Liu . Retrievable ultrafast covalent triazine framework membranes for organic solvent nanofiltration. Chemical Engineering Journal, 2024, 484: 149488–149499 https://doi.org/10.1016/j.cej.2024.149488