1. National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China 2. Institute of Power Engineering, National Academy of Sciences of Belarus, Minsk 220072, Belarus 3. Department of Chemical Engineering, University of Johannesburg, Johannesburg 17011, South Africa
Currently, the conversion of waste plastics into high-value products via catalytic pyrolysis enables the advancement of plastics’ open-loop recycling. However, enhancing selectivity remains a critical challenge. This study introduces a novel approach to catalytic pyrolysis, utilizing a combination of MCM-41 and modified gallium-based HZSM-5 catalysts, to achieve exceptional selectivity for aromatic liquid-phase products from linear low-density polyethylene. Firstly, to enhance the probability of dehydroaromatization optimization, the type and proportion of metal active sites within the HZSM-5 catalyst are fine-tuned, which would establish equilibrium with acid sites, resulting in a remarkable 15.72% increase in the selectivity of aromatic hydrocarbons. Secondly, to enhance the accessibility of volatiles to active sites, mesoporous MCM-41 with cracking capabilities is introduced. The doping ratio of MCM-41 is meticulously controlled to facilitate the diffusion of cracked volatiles to the active centers of modified gallium-based HZSM-5, enabling efficient reforming reactions. Experimental findings demonstrate that MCM-41 significantly enhances the dehydroaromatization activity of the modified gallium-based HZSM-5 catalyst. Under the influence of MCM-41:Zr2Ga3/HZSM-5 = 1:2 catalyst, the selectivity for aromatic hydrocarbons reaches an impressive 93.11%, with a notable 60.01% selectivity for benzene, toluene, ethylbenzene, and xylene. Lastly, this study proposes a plausible pathway for the generation of high-value aromatic hydrocarbons using the combined catalyst.
M Chu , Y Liu , X Lou , Q Zhang , J Chen . Rational design of chemical catalysis for plastic recycling. ACS Catalysis, 2022, 12(8): 4659–4679 https://doi.org/10.1021/acscatal.2c01286
2
A I Osman , M Hosny , A S Eltaweil , S Omar , A M Elgarahy , M Farghali , P S Yap , Y S Wu , S Nagandran , K Batumalaie . et al.. Microplastic sources, formation, toxicity and remediation: a review. Environmental Chemistry Letters, 2023, 21(4): 2129–2169 https://doi.org/10.1007/s10311-023-01593-3
3
A I Osman , C Farrell , A H Al-Muhtaseb , A S Al-Fatesh , J Harrison , D W Rooney . Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environmental Sciences Europe, 2020, 32(1): 112 https://doi.org/10.1186/s12302-020-00390-x
4
S D Anuar Sharuddin , F Abnisa , W M A Wan Daud , M K Aroua . Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Conversion and Management, 2017, 148: 925–934 https://doi.org/10.1016/j.enconman.2017.06.046
5
F Zhang , F Wang , X Wei , Y Yang , S Xu , D Deng , Y Z Wang . From trash to treasure: chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. Journal of Energy Chemistry, 2022, 69: 369–388 https://doi.org/10.1016/j.jechem.2021.12.052
6
Y Nakaji , M Tamura , S Miyaoka , S Kumagai , M Tanji , Y Nakagawa , T Yoshioka , K Tomishige . Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Applied Catalysis B: Environmental, 2021, 285: 119805 https://doi.org/10.1016/j.apcatb.2020.119805
7
X Zhang , H Yang , Z Chen , X Wang , H Feng , J Zhang , J Yu , S Gao , D Lai . Sustainable production of aromatics via catalytic pyrolysis of polyolefins towards the carbon cycle for plastics. Fuel, 2024, 357: 129897 https://doi.org/10.1016/j.fuel.2023.129897
8
Y Peng , Y Wang , L Ke , L Dai , Q Wu , K Cobb , Y Zeng , R Zou , Y Liu , R Ruan . A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management, 2022, 254: 115243 https://doi.org/10.1016/j.enconman.2022.115243
9
A Samanta , X Bai , B Robinson , H Chen , J Hu . Conversion of light alkane to value-added chemicals over ZSM-5/metal promoted catalysts. Industrial & Engineering Chemistry Research, 2017, 56(39): 11006–11012 https://doi.org/10.1021/acs.iecr.7b02095
10
J Zhang , M Ma , Z Chen , X Zhang , H Yang , X Wang , H Feng , J Yu , S Gao . Production of monocyclic aromatics and light olefins through ex-situ catalytic pyrolysis of low-density polyethylene over Ga/P/ZSM-5 catalyst. Journal of the Energy Institute, 2023, 108: 101235 https://doi.org/10.1016/j.joei.2023.101235
11
R Wu , P Lv , J Wang , Y Bai , J Wei , X Song , W Su , G Yu . Catalytic upgrading of cow manure pyrolysis vapors over zeolite/carbon composites prepared from coal gasification fine slag: high quality bio-oil obtaining and mechanism investigation. Fuel, 2023, 339: 126941 https://doi.org/10.1016/j.fuel.2022.126941
12
J Song , J Wang , Y Pan , X Du , J Sima , C Zhu , F Lou , Q Huang . Catalytic pyrolysis of waste polyethylene into benzene, toluene, ethylbenzene and xylene (BTEX)-enriched oil with dielectric barrier discharge reactor. Journal of Environmental Management, 2022, 322: 116096 https://doi.org/10.1016/j.jenvman.2022.116096
13
N M Phadke , J Van der Mynsbrugge , E Mansoor , A B Getsoian , M Head-Gordon , A T Bell . Characterization of isolated Ga3+ cations in Ga/H-MFI prepared by vapor-phase exchange of H-MFI zeolite with GaCl3. ACS Catalysis, 2018, 8(7): 6106–6126 https://doi.org/10.1021/acscatal.8b01254
14
Y Zhou , H Thirumalai , S K Smith , K H Whitmire , J Liu , A I Frenkel , L C Grabow , J D Rimer . Ethylene dehydroaromatization over Ga-ZSM-5 catalysts: nature and role of gallium speciation. Angewandte Chemie International Edition, 2020, 59(44): 19592–19601 https://doi.org/10.1002/anie.202007147
15
F Momayez , J Towfighi Darian , S M Teimouri Sendesi . Synthesis of zirconium and cerium over HZSM-5 catalysts for light olefins production from naphtha. Journal of Analytical and Applied Pyrolysis, 2015, 112: 135–140 https://doi.org/10.1016/j.jaap.2015.02.006
16
A K Panda , R K Singh , D K Mishra . Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renewable & Sustainable Energy Reviews, 2010, 14(1): 233–248 https://doi.org/10.1016/j.rser.2009.07.005
17
J Wang , J Jiang , Y Sun , X Meng , X Wang , R Ruan , A J Ragauskas , D C W Tsang . Heterogeneous Diels-Alder tandem catalysis for converting cellulose and polyethylene into BTX. Journal of Hazardous Materials, 2021, 414: 125418 https://doi.org/10.1016/j.jhazmat.2021.125418
18
Z Yang , J P Cao , T L Liu , C Zhu , X Y Zhao , X B Feng , Y P Zhao , H C Bai . Boosted production of aromatics by catalyzing upgrade pyrolysis vapors from lignite over Sn-Ga/HZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105064 https://doi.org/10.1016/j.jaap.2021.105064
19
F Lin , Y Zhong , Y Ma , Y Sun , X Men , Y Zhu . La2O3-promoted Ni/H-ZSM-5 catalyzed aqueous-phase guaiacol hydrodeoxygenation to cyclohexanol. Journal of Rare Earths, 2023, 41(2): 224–232 https://doi.org/10.1016/j.jre.2022.03.022
20
J Su , T Li , G Luo , Y Zhang , E R Naranov , K Wang . Co-hydropyrolysis of pine and HDPE over bimetallic catalysts: efficient BTEX production and process mechanism analysis. Fuel Processing Technology, 2023, 249: 107845 https://doi.org/10.1016/j.fuproc.2023.107845
21
Z H Du , R Chotchaipitakkul , P Sangteantong , W Donphai , W Limphirat , Y Poo-arporn , S Nijpanich , S Kiatphuengporn , P Jantaratana , M Chareonpanich . Catalytic LPG conversion over Fe-Ga modified ZSM-5 zeolite catalysts with different particle sizes: effect of confined-space zeolite and external magnetic field. Topics in Catalysis, 2023, 66(19-20): 1594–1607 https://doi.org/10.1007/s11244-023-01825-4
22
J Li , C Liu , Z Jia , Y Ye , D Lan , W Meng , J Wang , Z Wang , Y Hu , W Yang . Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene. Frontiers of Chemical Science and Engineering, 2024, 18(4): 45 https://doi.org/10.1007/s11705-024-2406-4
Y Hou , X Li , M Sun , C Li , S U H Bakhtiar , K Lei , S Yu , Z Wang , Z Hu , L Chen . et al.. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance. Frontiers of Chemical Science and Engineering, 2021, 15(2): 269–278 https://doi.org/10.1007/s11705-020-1948-3
25
D K Ratnasari , M A Nahil , P T Williams . Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. Journal of Analytical and Applied Pyrolysis, 2017, 124: 631–637 https://doi.org/10.1016/j.jaap.2016.12.027
26
Rêgo Silva J Manuel , de Morais Araújo A Mabel , da Costa Evangelista J Paulo , da Silva D Ribeiro , Gondim A Duarte , de Araujo A Souza . Evaluation of the kinetic and thermodynamic parameters in catalytic pyrolysis process of sunflower oil using Al-MCM-41 and zeolite H-ZSM-5. Fuel, 2023, 333: 126225 https://doi.org/10.1016/j.fuel.2022.126225
27
S Jin , K Cui , H Guan , M Yang , L Liu , C Lan . Preparation of mesoporous MCM-41 from natural sepiolite and its catalytic activity of cracking waste polystyrene plastics. Applied Clay Science, 2012, 56: 1–6 https://doi.org/10.1016/j.clay.2011.11.012
28
Z Wang , Y Ma , S Guo , S Wu , J Zhang , Y Cai , C Huangfu , Z Gu , W Zhao . Preparation and application of lanthanum-cobalt bimetallic modified composite ZSM-5/MCM-41 zeolite: enhancing the stability of aromatic compounds produced by lignin cracking in catalytic pyrolysis of pine sawdust. Applied Catalysis A, General, 2023, 668: 119482 https://doi.org/10.1016/j.apcata.2023.119482
29
J Sun , Y H Lee , R D Yappert , A M LaPointe , G W Coates , B Peters , M M Abu-Omar , S L Scott . Bifunctional tandem catalytic upcycling of polyethylene to surfactant-range alkylaromatics. Chem, 2023, 9(8): 2318–2336 https://doi.org/10.1016/j.chempr.2023.05.017
30
L Fu , Q Xiong , Q Wang , L Cai , Z Chen , Y Zhou . Catalytic pyrolysis of waste polyethylene using combined CaO and Ga/ZSM-5 catalysts for high value-added aromatics production. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9612–9623 https://doi.org/10.1021/acssuschemeng.2c02881
31
L Fu , H Lin , L Zhu , Q Wang , H Luo , Q Xiong , V S Vladimirovich , Y Zhou . Enhancing catalytic performance for waste plastic upgrading: simultaneous regulation of pore structure and acid sites in Ga-doped desilicated HZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 2023, 175: 106186 https://doi.org/10.1016/j.jaap.2023.106186
32
H Zhou , F Zhang , K Ji , J Gao , P Liu , K Zhang , S Wu . Relationship between acidity and activity on propane conversion over metal-modified HZSM-5 catalysts. Catalysts, 2021, 11(10): 1138 https://doi.org/10.3390/catal11101138
33
A Caiola , B Robinson , X Bai , D Shekhawat , J Hu . Study of the hydrogen pretreatment of gallium and platinum promoted ZSM-5 for the ethane dehydroaromatization reaction. Industrial & Engineering Chemistry Research, 2021, 60(30): 11421–11431 https://doi.org/10.1021/acs.iecr.1c01555
34
S Vichaphund , D Aht-ong , V Sricharoenchaikul , D Atong . Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renewable Energy, 2015, 79: 28–37 https://doi.org/10.1016/j.renene.2014.10.013
35
P Li , D Li , H Yang , X Wang , H Chen . Effects of Fe-, Zr-, and co-modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors. Energy & Fuels, 2016, 30(4): 3004–3013 https://doi.org/10.1021/acs.energyfuels.5b02894
36
Z Chen , L Xu , X Zhang . Upgrading of polyethylene to hydrocarbon fuels over the Fe-modified Pt/Al2O3 catalysts at a mild condition without external H2. Chemical Engineering Journal, 2022, 446: 136213 https://doi.org/10.1016/j.cej.2022.136213
37
J W Kim , S H Park , J Jung , J K Jeon , C H Ko , K E Jeong , Y K Park . Catalytic pyrolysis of mandarin residue from the mandarin juice processing industry. Bioresource Technology, 2013, 136: 431–436 https://doi.org/10.1016/j.biortech.2013.03.062
38
C Pang , R Han , Y Su , Y Zheng , M Peng , Q Liu . Effect of the acid site in the catalytic degradation of volatile organic compounds: a review. Chemical Engineering Journal, 2023, 454: 140125 https://doi.org/10.1016/j.cej.2022.140125
39
A Kostyniuk , D Bajec , B Likozar . Catalytic hydrocracking reactions of tetralin biomass tar model compound to benzene, toluene and xylenes (BTX) over metal-modified ZSM-5 in ambient pressure reactor. Renewable Energy, 2022, 188: 240–255 https://doi.org/10.1016/j.renene.2022.01.090
40
V B Custodis , S A Karakoulia , K S Triantafyllidis , J A van Bokhoven . Catalytic fast pyrolysis of lignin over high-surface-area mesoporous aluminosilicates: effect of porosity and acidity. ChemSusChem, 2016, 9(10): 1134–1145 https://doi.org/10.1002/cssc.201600105
41
E L Schultz , C A Mullen , A A Boateng . Aromatic hydrocarbon production from eucalyptus urophylla pyrolysis over several metal-modified ZSM-5 catalysts. Energy Technology, 2017, 5(1): 196–204 https://doi.org/10.1002/ente.201600206
42
W Wang , C Yao , X Ge , X Pu , J Yuan , W Sun , W Chen , X Feng , G Qian , X Duan . et al.. Catalytic conversion of polyethylene into aromatics with Pt/ZSM-5: insights into reaction pathways and rate-controlling step regulation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(27): 14933–14940 https://doi.org/10.1039/D3TA01917A
43
K Akubo , M A Nahil , P T Williams . Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. Journal of the Energy Institute, 2019, 92(1): 195–202 https://doi.org/10.1016/j.joei.2017.10.009
44
H Iftikhar , M Zeeshan , S Iqbal , B Muneer , M Razzaq . Co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield. Bioresource Technology, 2019, 289: 121647 https://doi.org/10.1016/j.biortech.2019.121647
45
D Zhang , T Jin , J Peng , J Ma , J Zhang , X Tian , M Ding . In-situ synthesis of micro/mesoporous HZSM-5 zeolite for catalytic pyrolysis of lignin to produce monocyclic aromatics. Fuel, 2023, 334: 126588 https://doi.org/10.1016/j.fuel.2022.126588
46
K Qian , W Tian , S Yan , W Li , L Yin , D Guo , Z Yang , D Chen , Y Feng . Aromatization of HDPE and PP over Ga-promoted zeolite: effects of pretreatment and zeolite type. Fuel, 2024, 357: 129781 https://doi.org/10.1016/j.fuel.2023.129781
47
L S Diaz-Silvarrey , K Zhang , A N Phan . Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE). Green Chemistry, 2018, 20(8): 1813–1823 https://doi.org/10.1039/C7GC03662K
48
F Zhang , M Zeng , R D Yappert , J Sun , Y H Lee , A M LaPointe , B Peters , M M Abu-Omar , S L Scott . Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science, 2020, 370(6515): 437–441 https://doi.org/10.1126/science.abc5441
49
C Vogt , B M Weckhuysen . The concept of active site in heterogeneous catalysis. Nature Reviews. Chemistry, 2022, 6(2): 89–111 https://doi.org/10.1038/s41570-021-00340-y
50
J Du , L Zeng , T Yan , C Wang , M Wang , L Luo , W Wu , Z Peng , H Li , J Zeng . Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. Nature Nanotechnology, 2023, 18(7): 772–779 https://doi.org/10.1038/s41565-023-01429-9
51
Y T Cheng , J Jae , J Shi , W Fan , G W Huber . Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angewandte Chemie International Edition, 2012, 51(6): 1387–1390 https://doi.org/10.1002/anie.201107390
52
G Li , B Hou , A Wang , X Xin . Cong Y, Wang X, Li N, Zhang T. Making JP-10 superfuel affordable with a lignocellulosic platform compound. Angewandte Chemie International Edition, 2019, 58(35): 12154–12158
53
A I Osman , J Meudal , F Laffir , J Thompson , D Rooney . Enhanced catalytic activity of Ni on η-Al2O3 and ZSM-5 on addition of ceria zirconia for the partial oxidation of methane. Applied Catalysis B: Environmental, 2017, 212: 68–79 https://doi.org/10.1016/j.apcatb.2016.12.058