Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (11): 138   https://doi.org/10.1007/s11705-024-2489-y
  本期目录
Active targeted drug delivery system constructed from functionalized pillararenes for chemo/photodynamic synergistic therapy
Bing Lu(), Yuying Huang, Jiachen Xia, Yong Yao()
College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
 全文: PDF(897 KB)   HTML
Abstract

Nowadays, although functionalized pillararenes have been widely designed to be used in drug delivery system, targeted group modified pillararenes have been seldom reported and used in tumor multimodal therapy. Herein, a functionalized pillararene with a polyethylene glycol chain and triphenylphosphonium cation WP5-PEG-TPP was designed and synthesized. Subsequently, an active targeted drug delivery system was constructed based on its host-guest interactions with a newly designed porphyrin derivative, Py-Por. The experimental results demonstrated that this drug delivery system has exhibited excellent targeting ability against tumor cells, but interestingly it could not enter normal cells. After loading the hypoxia-activated prodrug tirapazamine, the prepared nanodrugs displayed high lethality to tumor cells due to their chemo/photodynamic synergistic therapy capability, but negligible toxicity to normal cells. Preliminary therapeutic mechanism study elucidated the synergistic therapy process.

Key wordsdurg delivery system    active targeting    pillararene    chemo/photodynamic synergistic therapy.
收稿日期: 2024-03-31      出版日期: 2024-07-31
Corresponding Author(s): Bing Lu,Yong Yao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(11): 138.
Bing Lu, Yuying Huang, Jiachen Xia, Yong Yao. Active targeted drug delivery system constructed from functionalized pillararenes for chemo/photodynamic synergistic therapy. Front. Chem. Sci. Eng., 2024, 18(11): 138.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2489-y
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I11/138
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 R L Siegel , A N Giaquinto , A Jemal . Cancer Statistics, 2024. A Cancer Journal for Clinicians, 2024, 74(1): 12–49
https://doi.org/10.3322/caac.21820
2 V P Torchilin . Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews. Drug Discovery, 2014, 13(11): 813–827
https://doi.org/10.1038/nrd4333
3 Z R LuP Qiao. Drug delivery in cancer therapy, quo vadis? Molecular Pharmaceutics, 2018, 15(9): 3603–3616
4 S M Park , A Aalipour , O Vermesh , J H Yu , S S Gambhir . Towards clinically translatable in vivo nanodiagnostics. Nature Reviews. Materials, 2017, 2(5): 17014
https://doi.org/10.1038/natrevmats.2017.14
5 A Z Wang , R Langer , O C Farokhzad . Nanoparticle delivery of cancer drugs. Annual Review of Medicine, 2012, 63(1): 185–198
https://doi.org/10.1146/annurev-med-040210-162544
6 P Gao , W Pan , N Li , B Tang . Boosting cancer therapy with organelle-targeted nanomaterials. ACS Applied Materials & Interfaces, 2019, 11(30): 26529–26558
https://doi.org/10.1021/acsami.9b01370
7 S S Liew , X Qin , J Zhou , L Li , W Huang , S Q Yao . Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angewandte Chemie International Edition, 2020, 60(5): 2232–2256
https://doi.org/10.1002/anie.201915826
8 K Wang , Y Xiang , W Pan , H Wang , N Li , B Tang . Dual-targeted photothermal agents for enhanced cancer therapy. Chemical Science, 2020, 11(31): 8055–8072
https://doi.org/10.1039/D0SC03173A
9 M J Webber , R Langer . Drug delivery by supramolecular design. Chemical Society Reviews, 2017, 46(21): 6600–6620
https://doi.org/10.1039/C7CS00391A
10 Z Li , N Song , Y W Yang . Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter, 2019, 1(2): 345–368
https://doi.org/10.1016/j.matt.2019.05.019
11 J Zhou , L Rao , G Yu , T R Cook , X Chen , F Huang . Supramolecular cancer nanotheranostics. Chemical Society Reviews, 2021, 50(4): 2839–2891
https://doi.org/10.1039/D0CS00011F
12 N Kwon , H Kim , X Li , J Yoon . Supramolecular agents for combination of photodynamic therapy and other treatments. Chemical Science (Cambridge), 2021, 12(21): 7248–7268
https://doi.org/10.1039/D1SC01125A
13 W Feng , M Jin , K Yang , Y Pei , Z Pei . Supramolecular delivery systems based on pillararenes. Chemical Communications, 2018, 54(97): 13626–13640
https://doi.org/10.1039/C8CC08252A
14 T Ogoshi , T Kakuta , T A Yamagishi . Applications of pillar[n]arene-based supramolecular assemblies. Angewandte Chemie International Edition, 2018, 58(8): 2197–2206
https://doi.org/10.1002/anie.201805884
15 H Zhang , Z Liu , Y Zhao . Pillararene-based self-assembled amphiphiles. Chemical Society Reviews, 2018, 47(14): 5491–5528
https://doi.org/10.1039/C8CS00037A
16 N Song , X Y Lou , L Ma , H Gao , Y W Yang . Supramolecular nanotheranostics based on pillarenes. Theranostics, 2019, 9(11): 3075–3093
https://doi.org/10.7150/thno.31858
17 T Xiao , L Qi , W Zhong , C Lin , R Wang , L Wang . Stimuli-responsive nanocarriers constructed from pillar[n]arene-based supra-amphiphiles. Materials Chemistry Frontiers, 2019, 3(10): 1973–1993
https://doi.org/10.1039/C9QM00428A
18 C Wang , H Li , J Dong , Y Chen , X Luan , X Li , X Du . Pillararene-based supramolecular vesicles for stimuli-responsive drug delivery. Chemistry, 2022, 28(71): 202202050
https://doi.org/10.1002/chem.202202050
19 Q Yang , W Xu , M Cheng , S Zhang , E G Kovaleva , F Liang , D Tian , J A Liu , R M Abdelhameed , J Cheng , H Li . Controlled release of drug molecules by pillararene-modified nanosystems. Chemical Communications, 2022, 58(20): 3255–3269
https://doi.org/10.1039/D1CC05584D
20 X Li , M Shen , J Yang , L Liu , Y W Yang . Pillararene-based stimuli-responsive supramolecular delivery systems for cancer therapy. Advanced Materials, 2024, 36(16): 2313317
https://doi.org/10.1002/adma.202313317
21 K Yang , Z Zhang , J Du , W Li , Z Pei . Host-guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chemical Communications, 2020, 56(44): 5865–5876
https://doi.org/10.1039/D0CC02001J
22 H Zhu , H Wang , B Shi , L Shangguan , W Tong , G Yu , Z Mao , F Huang . Supramolecular peptide constructed by molecular lego allowing programmable self-assembly for photodynamic therapy. Nature Communications, 2019, 10(1): 2412
https://doi.org/10.1038/s41467-019-10385-9
23 M A H Muhammed , L K Cruz , A H Emwas , A M El-Zohry , B Moosa , O F Mohammed , N M Khashab . Pillar[5]arene-stabilized silver nanoclusters: extraordinary stability and luminescence enhancement induced by host-guest interactions. Angewandte Chemie International Edition, 2019, 58(44): 15665–15670
https://doi.org/10.1002/anie.201906740
24 X Xu , F A Jerca , K Van Hecke , V V Jerca , R Hoogenboom . High compression strength single network hydrogels with pillar[5]arene junction points. Materials Horizons, 2020, 7(2): 566–573
https://doi.org/10.1039/C9MH01401B
25 Y Cai , Z Zhang , Y Ding , L Hu , J Wang , T Chen , Y Yao . Recent development of pillar[n]arene-based amphiphiles. Chinese Chemical Letters, 2021, 32(4): 1267–1279
https://doi.org/10.1016/j.cclet.2020.10.036
26 Y Mi , J Ma , W Liang , C Xiao , W Wu , D Zhou , J Yao , W Sun , J Sun , G Gao . et al.. Guest-binding-induced interhetero hosts charge transfer crystallization: selective coloration of commonly used organic solvents. Journal of the American Chemical Society, 2021, 143(3): 1553–1561
https://doi.org/10.1021/jacs.0c11833
27 R TangY YeS ZhuY WangB LuY Yao. Pillar[6]arenes: from preparation, host-guest property to self-assembly and applications. Chinese Chemical Letters, 2023, 34(107734
28 J Xia , J Wang , Q Zhao , B Lu , Y Yao . Dual-responsive drug-delivery system based on peg-functionalized pillararenes containing disulfide and amido bonds for cancer theranostics. ChemBioChem, 2023, 24(21): 202300513
https://doi.org/10.1002/cbic.202300513
29 Y Feng , S Qi , X Yu , X Zhang , H Zhu , G Yu . Supramolecular modulation of tumor microenvironment through pillar[5]arene-based host–guest recognition to synergize cancer immunotherapy. Journal of the American Chemical Society, 2023, 145(34): 18789–18799
https://doi.org/10.1021/jacs.3c03031
30 B Lu , J Xia , Y Huang , Y Yao . The design strategy for pillararene based active targeted drug delivery systems. Chemical Communications, 2023, 59(81): 12091–12099
https://doi.org/10.1039/D3CC04021F
31 Q L Li , Y Sun , L Ren , X Wang , C Wang , L Li , Y W Yang , X Yu , J Yu . Supramolecular nanosystem based on pillararene-capped cus nanoparticles for targeted chemo-photothermal therapy. ACS Applied Materials & Interfaces, 2018, 10(35): 29314–29324
https://doi.org/10.1021/acsami.8b09330
32 S Lan , Y Liu , K Shi , D Ma . Acetal-functionalized pillar[5]arene: a pH-responsive and versatile nanomaterial for the delivery of chemotherapeutic agents. ACS Applied Bio Materials, 2020, 3(4): 2325–2333
https://doi.org/10.1021/acsabm.0c00086
33 M Cen , Y Ding , J Wang , X Yuan , B Lu , Y Wang , Y Yao . Cationic water-soluble pillar[5]arene-modified Cu2–xSe nanoparticles: supramolecular trap for ATP and application in targeted photothermal therapy in the NIR-II window. ACS Macro Letters, 2020, 9(11): 1558–1562
https://doi.org/10.1021/acsmacrolett.0c00714
34 P Wei , J A Czaplewska , L Wang , S Schubert , J C Brendel , U S Schubert . Straightforward access to glycosylated, acid sensitive nanogels by host-guest interactions with sugar-modified pillar[5]arenes. ACS Macro Letters, 2020, 9(4): 540–545
https://doi.org/10.1021/acsmacrolett.0c00030
35 H Peng , B Xie , X Yang , J Dai , G Wei , Y He . Pillar[5]arene-based, dual pH and enzyme responsive supramolecular vesicles for targeted antibiotic delivery against intracellular MRSA. Chemical Communications (Cambridge), 2020, 56(58): 8115–8118
https://doi.org/10.1039/D0CC02522D
36 S Guo , Q Huang , J Wei , S Wang , Y Wang , L Wang , R Wang . Efficient intracellular delivery of native proteins facilitated by preorganized guanidiniums on pillar[5]arene skeleton. Nano Today, 2022, 43: 101396
https://doi.org/10.1016/j.nantod.2022.101396
37 B Lu , Y Huang , H Quan , J Xia , J Wang , Y Ding , Y Wang , Y Yao . Mitochondria-targeting multimodal phototheranostics based on triphenylphosphonium cation modified amphiphilic pillararenes and A–D–A fused-ring photosensitizers. ACS Macro Letters, 2023, 12(10): 1365–1371
https://doi.org/10.1021/acsmacrolett.3c00454
38 S Chao , Z Shen , B Li , Y Pei , Z Pei . An L-arginine-functionalized pillar[5]arene-based supramolecular photosensitizer for synergistically enhanced cancer therapeutic effectiveness. Chemical Communications, 2023, 59(23): 3455–3458
https://doi.org/10.1039/D3CC00123G
39 S Chao , Z Shen , Y Pei , Y Lv , X Chen , J Ren , K Yang , Z Pei . Pillar[5]arene-based supramolecular photosensitizer for enhanced hypoxic-tumor therapeutic effectiveness. Chemical Communications (Cambridge), 2021, 57(62): 7625–7628
https://doi.org/10.1039/D1CC02959B
40 G Yu , W Yu , L Shao , Z Zhang , X Chi , Z Mao , C Gao , F Huang . Fabrication of a targeted drug delivery system from a pillar[5]arene-based supramolecular diblock copolymeric amphiphile for effective cancer therapy. Advanced Functional Materials, 2016, 26(48): 8999–9008
https://doi.org/10.1002/adfm.201601770
41 X Wu , Y Zhang , Y Lu , S Pang , K Yang , Z Tian , Y Pei , Y Qu , F Wang , Z Pei . Synergistic and targeted drug delivery based on nano-CeO2 capped with galactose functionalized pillar[5]arene via host-guest interactions. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(19): 3483–3487
https://doi.org/10.1039/C7TB00752C
42 H Peng , B Xie , X Cen , J Dai , Y Dai , X Yang , Y He . Glutathione-responsive multifunctional nanoparticles based on mannose-modified pillar[5]arene for targeted antibiotic delivery against intracellular methicillin-resistant S. aureus. Materials Chemistry Frontiers, 2022, 6(3): 360–367
https://doi.org/10.1039/D1QM01459E
43 S Chao , P Huang , Z Shen , Y Pei , Y Lv , Y Lu , Z Pei . A mannose-functionalized pillar[5]arene-based supramolecular fluorescent probe for real-time monitoring of gemcitabine delivery to cancer cells. Organic Chemistry Frontiers: An International Journal of Organic Chemistry, 2023, 10(14): 3491–3497
https://doi.org/10.1039/D3QO00476G
44 J Li , X Lv , J Li , W Jin , Z Chen , Y Wen , Z Pei , Y Pei . A supramolecular near-infrared nanophotosensitizer from host-guest complex of lactose-capped pillar[5]arene with aza-bodipy derivative for tumor eradication. Organic Chemistry Frontiers: An International Journal of Organic Chemistry, 2023, 10(8): 1927–1935
https://doi.org/10.1039/D3QO00065F
45 M Yu , R Cao , Z Ma , M Zhu . Development of “smart” drug delivery systems for Chemo/PDT synergistic treatment. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2023, 11(7): 1416–1433
https://doi.org/10.1039/D2TB02248F
46 Q Wang , L Tian , J Xu , B Xia , J Li , F Lu , X Lu , W Wang , W Huang , Q Fan . Multifunctional supramolecular vesicles for combined photothermal/photodynamic/hypoxia-activated chemotherapy. Chemical Communications, 2018, 54(73): 10328–10331
https://doi.org/10.1039/C8CC05560B
47 H Quan , Y Huang , J Xia , J Yang , B Lu , P Liu , Y Yao . Integrating pillar[5]arene and bodipy for a supramolecular nanoplatform to achieve synergistic photodynamic therapy and chemotherapy. ChemBioChem, 2023, 24(19): 202300461
https://doi.org/10.1002/cbic.202300461
[1] FCE-24041-OF-LB_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed