Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2008, Vol. 2 Issue (3) : 301-307    https://doi.org/10.1007/s11705-008-0060-x
Regioselective acylation of pyridoxine catalyzed by immobilized lipase in ionic liquid
BAI Shu, REN Mengyuan, WANG Lele, SUN Yan
Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University
 Download: PDF(137 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The regioselective acylation of pyridoxine catalyzed by immobilized lipase (Candida Antarctica) in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) has been investigated, and compared with that in acetonitrile (ACN). The acetylation of pyridoxine using acetic anhydride in [BMIM]PF6 gave comparable conversion of pyridoxine to 5-monoacetyl pyridoxine with considerably higher regioselectivity (93%–95%) than that in ACN (70%–73%). Among the tested parameters, water activity (aw) and temperature have profound effects on the reaction performances in either [BMIM]PF6 or ACN. For the reaction in [BMIM]PF6, higher temperature (50°C–55°C) and lower aw (<0.01) are preferable conditions to obtain better conversion and regioselectivity. Mass transfer limitation and intrinsic kinetic from the ionic nature of ionic liquids (ILs) may account for a different rate-temperature profile and a lower velocity at lower temperature in [BMIM]PF6-mediated reaction. Moreover, consecutive batch reactions for enzyme reuse also show that lipase exhibited a much higher thermal stability and better reusability in [BMIM]PF6 than in ACN, which represents another advantage of ILs as an alternative to traditional solvents beyond green technology.
Issue Date: 05 September 2008
 Cite this article:   
REN Mengyuan,BAI Shu,WANG Lele, et al. Regioselective acylation of pyridoxine catalyzed by immobilized lipase in ionic liquid[J]. Front. Chem. Sci. Eng., 2008, 2(3): 301-307.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-008-0060-x
https://academic.hep.com.cn/fcse/EN/Y2008/V2/I3/301
1 Fonda M L . Vitamin B6 metabolism and binding to proteins in the blood of alcoholicand nonalcoholic men. Alcohol Clin ExpRes, 1993, 17: 1171–1178.
doi:10.1111/j.1530‐0277.1993.tb05223.x
2 DeSimone J M . Practical approaches to green solvents. Science, 2002, 297: 799–803.
doi:10.1126/science.1069622
3 Wasserscheid P, Welton T . Ionic liquids in synthesis. Weinheim: Wiley-VCH, 2003
4 Dupont J, Souza R F, Suarez P A Z . Ionic liquid (Molten salt) phase organometallic catalysis. Chem Rev, 2002, 102: 3667–3692.
doi:10.1021/cr010338r
5 Kragl U, Eckstein M, Kaftzik N . Enzyme catalysis in ionic liquid. Curr Opin Biothchnol, 2002, 13: 565–570.
doi:10.1016/S0958‐1669(02)00353‐1
6 Park S, Kazlauskas R J . Biocatalysis in ionic liquids-advantagesbeyond green technology. Curr Opin Biotechnol, 2003, 14: 432–437.
doi:10.1016/S0958‐1669(03)00100‐9
7 Brennecke J F, Maginne E J . Ionic liquids: Innovativefluids for chemical processing. AIChE J, 2001, 47: 2384–2389.
doi:10.1002/aic.690471102
8 Guo Z, Xu X . New opportunity for enzymaticmodification of fats and oils with industrial potentials. Org Biomol Chem, 2005, 3: 2615–2619.
doi:10.1039/b506763d
9 Lee S G . Functionalized imidazolium salts for task-specific ionic liquidsand their applications. Chem Commun, 2006, 1049–1063
10 Schöfer S H, Kaftzik N, Wasserscheid P, Kragl U . Enzyme catalysisin ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanolwith improved enantioselectivity. ChemCommun, 2001, 425–426
11 Kim M J, Choi M Lee J K, Ahn Y . Enzymatic selective acylation of glycosides in ionicliquids: Significantly enhanced reactivity and regioselectivity. J Mol Catal B: Enzyme, 2003, 26: 115–118.
doi:10.1016/j.molcatb.2003.04.001
12 Li X F, Lou W Y, Smith T J, Zong M H, Wu H, Wang J F . Efficientregioselective acylationof 1-β-D-arabinofuranosylcytosine catalyzedby lipase in ionic liquid containing systems. Green Chem, 2006, 8: 538–544.
doi:10.1039/b600397d
13 Itoh T, Akasaki E, Kudo K, Shirakami S . Lipase-catalysedenantioselective acylation in the ionic liquid solvent system: reactionof enzyme anchored to the solvent. ChemLett, 2001, 1: 262–263.
doi:10.1246/cl.2001.262
14 Baldessari A, Mangone C P, Gros E G . Lipase-catalyzed acylation and deacylation reactionsof pyridoxine, a member of Vitamin-B6 group. Helvetica Chimica Acta, 1998, 81: 2407–2413.
doi:10.1002/(SICI)1522‐2675(19981216)81:12<2407::AID‐HLCA2407>3.0.CO;2‐X
15 Wilkes J S . A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem, 2002, 4: 73–80.
doi:10.1039/b110838g
16 Song C E . Enantioselective chemo- and bio-catalysis in ionic liquids. Chem Common, 2004, 1033–1043
17 Barahona D, Pfromm P H, Rezac M E . Effects of water activity on the lipase catalyzed esterificationof geraniol in ionic liquid [bmim]PF6. Biotechnol Bioeng, 2005, 93: 318–324.
doi:10.1002/bit.20723
18 Earle M J, McCormac P B, Seddon K R . The first high yield green route to a pharmaceuticalin a room temperature ionic liquid. GreenChem, 2000, 2: 261–262.
doi:10.1039/b006612p
19 Huddleston J G, Willauer H D, Swatloki R P . Room temperature ionic liquids as novel media for ‘clean'liquid-liquid extraction. J Chem Soc ChemComm, 1998, 1765–1766
20 Park S, Kazlauskas R J . Improved preparation anduse of room-temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations. J Org Chem, 2001, 66: 8395–8401.
doi:10.1021/jo015761e
21 Halling P J . Salt hydrates for water activity control with biocatalysis in organicmedia. Biotechnol Tech, 1992, 6: 271–276.
doi:10.1007/BF02439357
22 Guo Z, Xu X . Lipase-catalyzed glycerolysisof fats and oils in ionic liquids: a further study on the reactionsystem. Green Chemistry, 2006, 8: 54–62.
doi:10.1039/b511117j
23 Aggarwal A, Lancaster N L, Sethi A R, Welton T . The role ofhydrogen bonding in controlling the selectivity of Diels-Alder reactionsin room-temperature ionic liquids. GreenChem, 2002, 4: 517–520.
doi:10.1039/b206472c
24 Guo Z, Chen B, Murillo R L, Tan T, Xu X . Functional dependency of structures of ionic liquids:do substituents govern the selectivity of enzymatic glycerolysis?Org Biomol Chem, 2006, 4: 2772–2776.
doi:10.1039/b606900b
25 Halling P J . Thermodynamic predictions for biocatalysis in nonconventional media:theory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol, 1994, 16: 178–206.
doi:10.1016/0141‐0229(94)90043‐4
26 Berberich J A, Kaar J L, Russell A J . Use of salt hydrate pairs to control water activity forenzyme catalysis in ionic liquids. BiotechnolProg, 2003, 19: 1029–1032.
doi:10.1021/bp034001h
27 Bell G, Janssen A E M, Halling P J . Water activity fails to predict critical hydration levelfor enzyme activity in polar organic solvents: interconversion ofwater concentrations and activities. EnzymeMicrob Technol, 1997, 20: 471–477.
doi:10.1016/S0141‐0229(96)00204‐9
28 Lozano P, Carrié D, Vaultier M, Iborra J L . Over-stabilizationof Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol Lett, 2001, 23: 1529–1533.
doi:10.1023/A:1011697609756
29 Park S, Kazlauskas R J . Biocatalysis in ionic liquids-advantagesbeyond green technology. Curr Opin Biotechnol, 2003, 14: 432–437.
doi:10.1016/S0958‐1669(03)00100‐9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed