Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (1) : 33-38    https://doi.org/10.1007/s11705-009-0108-6
RESEARCH ARTICLE
Multiphase surfactant-assisted reaction-separation system in a microchannel reactor
Salah ALJBOUR1(), Tomohiko TAGAWA1, Mohammad MATOUQ2, Hiroshi YAMADA1
1. Department of Chemical Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan; 2. Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan
 Download: PDF(213 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Lewis acid-catalyzed addition of trimethylsilyl cyanide to p-chlorobenzaldehyde in a microchannel reactor was investigated. The microchannel was integrated to promote both reaction and separation of the biphase system. FeF3 and Cu(triflate)2 were used as water-stable Lewis acid catalysts. Sodium dodecyl sulfate was incorporated in the organic-aqueous system to enhance the reactivity and to manipulate the multiphase flow inside the microchannel. It was found that the dynamics and the kinetics of the multiphase reaction were affected by the new micellar system. Parallel multiphase flow inside the microchannel was obtained, allowing for continuous and acceptable phase separation. Enhanced selectivity was achieved by operating at lower conversion values.

Keywords Lewis acid catalysis      multiphase reactions      process intensification      microchannel reactor      green engineering     
Corresponding Author(s): ALJBOUR Salah,Email:saljbour@yahoo.com   
Issue Date: 05 March 2009
 Cite this article:   
Tomohiko TAGAWA,Mohammad MATOUQ,Hiroshi YAMADA, et al. Multiphase surfactant-assisted reaction-separation system in a microchannel reactor[J]. Front Chem Eng Chin, 2009, 3(1): 33-38.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0108-6
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I1/33
Fig.1  Addition of TMSCN to -chlorobenzaldehyde to afford the corresponding cyanohydrin/-chloromandelonitrile using water-stable Lewis acid catalysts
Fig.2  Microchannel reactor apparatus
detector typeJUSCO UV-970 Intelligent UV/VIS Detector, Japan
detectionUV 254 nm
pumpJASCO 880-PU, Japan
columnIntertsil CN-3, 5 micrometer, 250 mm ′ 4.6 mm ID, GL Science Inc. Japan
column temperature313 K
eluentA: hexane, B: ethyl acetate, A/B=70/30, V/V
flow rate1.0 mL?min–1
injection volume20 microliter
Tab.1  HPLC analysis conditions
Fig.3  Slug flow at the inlet of the microchannel: organic phase (0.02 mol·L PCBA, 0.04 mol·L TMSCN, toluene), aqueous phase (0.006 mol·L FeF, water), ==0.001 mL?min
Fig.4  Slug flow inside the microchannel: organic phase (0.02 mol·L PCBA, 0.04 mol·L TMSCN, ethylacetate), aqueous phase (0.006 mol·L FeF, water), ==0.001 mL?min
Fig.5  Parallel flow at the inlet of the microchannel: organic phase (0.02 mol·L PCBA, 0.04 mol·L TMSCN, ethylacetate), aqueous phase (0.006 mol·L FeF, 0.028 mol·L SDS, water), ==0.001 mL?min
Fig.6  Parallel flow inside the microchannel: organic phase (0.02 mol·L PCBA, 0.04 mol·L TMSCN, ethylacetate), aqueous phase (0.006 mol·L FeF, 0.028 mol·L SDS, water), ==0.001 mL?min
Fig.7  Phase separation performance as a function of phase flow rate
Fig.8  Phase separation performance (==0.001 mL?min)
Fig.9  Effect of the amount of SDS on the conversion of PCBA: organic phase (0.02 mol·L PCBA, 0.04 mol·L TMSCN, ethyl acetate); aqueous phase (0.006 mol·L FeF, SDS, water); ==0.001 mL?min
Fig.10  Effect of the amount of SDS on the conversion of PCBA: organic phase (0.02 mol·L PCBA, 0.04 mol·L TMSCN, ethyl acetate); aqueous phase (0.002mol·L Cu (triflate), SDS, water); ==0.001 mL?min
Fig.11  Generation of HCN : organic phase (0.02 mol?L PCBA, 0.04 mol?L TMSCN, ethyl acetate); aqueous phase (0.006 mol?L FeF, 0.042 mol?L SDS, water); ==0.001 mL?min
Fig.12  Effect of residence time on the conversion of PCBA and selectivity: organic phase (0.02 mol?L PCBA, 0.04 mol?L TMSCN, ethyl acetate); aqueous phase (0.006 mol?L FeF, 0.028 mol?L SDS, water)
Fig.13  Effect of residence time on the conversion of PCBA and selectivity: organic phase (0.02 mol?L PCBA, 0.04 mol?L TMSCN, ethyl acetate); aqueous phase (0.002 mol?L Cu (triflate), 0.017 mol?L SDS, water)
1 Li C-J. Organic reactions in aqueous media with a focus on carbon-carbon bond formation. Chem Rev , 1993, 93: 2023-2035
doi: 10.1021/cr00022a004
2 Lindstrom U M. Stereoselective organic reactions in water. Chem Rev , 2002, 102: 2751-2772
doi: 10.1021/cr010122p
3 Kobayashi S, Nagayama S, Busujima T. Lewis acid catalysis in aqueous media: copper (II)-catalyzed aldol and allylation reactions in a water-ethanol-toluene solution. Chem Lett , 1997: 959-960
doi: 10.1246/cl.1997.959
4 Kobayashi S, Wakabayashi T, Nagayama S, Oyamada H. Lewis acid catalysis in micellar systems: Sc(OTf)3-catalyzed aqueous aldol reactions of silyl enol ethers with aldehydes in the presence of a surfactant. Tetrahedron Letters , 1997, 38: 4559-4562
doi: 10.1016/S0040-4039(97)00854-X
5 Killer E, Feringa B L. Highly efficient ytterbium triflate catalyzed michael addition of nitroesters in water. Synlett , 1997: 842
doi: 10.1055/s-1997-5761
6 Otto S, Bertoncin F, Engberts B F N. Lewis acid catalysis of a Diels-Alder reaction in water. J Am Chem Soc , 1996, 118: 7702-7707
doi: 10.1021/ja960318k
7 Bandgar B P, Kamble V T. Organic reactions in aqueous medium: FeF3catalyzed chemoselective addition of cyanotrimethylsilane to aldehydes. Green Chemistry , 2001, 3: 265-266
doi: 10.1039/b106872p
8 Tagawa T, Aljbour S, Matouq M, Yamada H. Micro-channel reactor with guideline structure for organic aqueous binary system. Chem Eng Sci , 2007, 62: 5123-5126
doi: 10.1016/j.ces.2007.03.015
9 Baroud C N, Willaime H. Multiphase flows in microfluidics. C R Physique , 2004, 5: 547-555
10 Shui L, Eijkel J C T, van den Berg A. Multiphase flow in microfluidic systems: control and applications of droplets and interfaces. Advances in Colloid and Interface Science , 2007, 133: 35-49
doi: 10.1016/j.cis.2007.03.001
11 Guuillot P, Colin A. Stability of parallel flows in a microchannel after a T junction, Physical Review , 2005, 72: 066301
doi: 10.1103/PhysRevA.72.066301
12 Reddy V, Zahn J D. Interfacial stabilization of organic-aqueous two-phase microflows for a miniaturized DNA extraction. Journal of Colloid and interface Science , 2005, 286: 158-165
13 Kashid M N, Platte F, Agar D W, Turek S. Computational modelling of slug flow in a capillary microreactor. Journal of Computational and Applied Mathematics , 2007, 203: 487-497
doi: 10.1016/j.cam.2006.04.010
14 Ahmed B, Barrow D, Wirth T. Enhancement of reaction rates by segmented fluid flow in capillary scale reactors. Adv Synth Catal , 2006, 348: 1043-1048
doi: 10.1002/adsc.200505480
[1] Xin Gao, Dandan Shu, Xingang Li, Hong Li. Improved film evaporator for mechanistic understanding of microwave-induced separation process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 759-771.
[2] Parimal Pal, Ramesh Kumar, Subhamay Banerjee. Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(1): 152-163.
[3] Changwei HU, Yu YANG, Jia LUO, Pan PAN, Dongmei TONG, Guiying LI. Recent advances in the catalytic pyrolysis of biomass[J]. Front Chem Sci Eng, 2011, 5(2): 188-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed