Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2010, Vol. 4 Issue (3) : 342-347    https://doi.org/10.1007/s11705-009-0279-1
Research articles
Catalysis and deactivation of montmorillonite K10 in the aryl O -glycosylation of glycosyl trichloroacetoimidates
Xiaoliu LI,Xinhao YAN,Zhiwei LI,Hua CHEN,Pingzhu ZHANG,
Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China;
 Download: PDF(173 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The catalysis of montmorillonite K10 (MK10) for aryl O-glycosylation of glycosyl trichloroacetimidates was investigated. It was found that the catalyst MK10 is deactivated gradually in the recycle glycosylation. The fresh and the deactivated catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA), and N2 adsorption-desorption. The results show that the eliminated trichloroacetamide molecule deposits on the MK10, which blocks and poisons the active sites, resulting in the deactivation of the catalyst. The regeneration of the deactivated MK10 by calcination was studied preliminarily.
Issue Date: 05 September 2010
 Cite this article:   
Xinhao YAN,Xiaoliu LI,Zhiwei LI, et al. Catalysis and deactivation of montmorillonite K10 in the aryl O -glycosylation of glycosyl trichloroacetoimidates[J]. Front. Chem. Sci. Eng., 2010, 4(3): 342-347.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0279-1
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I3/342
Toshima K, Tatsuta K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem Rev, 1993, 93: 1503–1531

doi: 10.1021/cr00020a006
Jensen K J. O-Glycosylations under neutral or basic conditions. J Chem Soc Perkin Trans 1, 2002, 2219–2233

doi: 10.1039/b110071h
Pellissier H. Use of O-glycosylation in total synthesis. Tetrahedron, 2005, 61: 2947–2993

doi: 10.1016/j.tet.2005.01.070
Jacobsson M, Malmberg J, Ellervik U. Aromatic O-glycosylation. Carbohydr Res, 2006, 341: 1266–1281

doi: 10.1016/j.carres.2006.04.004
Mahling J A, Schmidt R R. Aryl C-glycosides from O-glycosyltrichloroacetimidates and phenolderivatives with trimethylsilyl trifluoromethanesulfonate (TMSOTf)as the catalyst. Synthesis, 1993, 325–328

doi: 10.1055/s-1993-25859
Hasuoka A, Nakayama Y, Adachi M, Kamiguchi H, Kamiyama K. Development of a stereoselective practical synthetic route to Indolmycin, a candidateanti-H pylori agent. Chem Pharm Bull, 2001, 49: 1604–1608

doi: 10.1248/cpb.49.1604
Du Y, Wie G, Linhardt R J. The first total synthesisof calabricoside A. Tetrahedron Lett, 2003, 44: 6887–6890

doi: 10.1016/S0040-4039(03)01706-4
B?hm G, Waldmann H. O-glycoside synthesis under neutral conditionsin concentrated solutions of LiClO4 in organic solvents employing benzyl-protected glycosyl donors. Liebigs Ann, 1996, 613–619
Matsumoto T, Katsuki M, Suzuki K. Rapid O-glycosidation of phenols with glycosyl fluoride by usingthe combinational activator, Cp2HfCl2-AgClO4. Chem Lett, 1989, 437–440

doi: 10.1246/cl.1989.437
Yamaguchi M, Horiguchi A, Fukuda A, Minami T. Novel synthesis of aryl 2,3,4,6-tetra-O-acetyl-D-glucopyranosides. J Chem Soc Perkin Trans1, 1990, 1079–1082

doi: 10.1039/p19900001079
Smits E, Engberts J B F N, Kellogg R M, Van Doren H A. Reliable method for the synthesis of aryl β-D-glucopyranosides, using boron trifluoride-diethyl ether as catalyst. J Chem Soc Perkin Trans 1, 1996, 2873–2877

doi: 10.1039/p19960002873
Yamanoi T, Fujioka A, Inazu T. New synthetic methods andreagents for complex carbohydrates. IX. aryl D-glucopyranosides and 1-aryl-1-deoxy-D-glucopyranoses from 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl dimethylphosphinothioate. Bull Chem Soc Jpn, 1994, 66: 1488–1491

doi: 10.1246/bcsj.67.1488
Kometani T, Kondo H, Fujimori Y. Boron trifluoride-catalyzed rearrangementof 2-aryloxytetrahydropyrans: a new entry to C-arylglycosidation. Synthesis, 1988, 1005–1007

doi: 10.1055/s-1988-27788
Matsumoto T, Katsuki K, Suzuki K. New approach to C-aryl glycosides starting from phenol andglycosyl fluoride. Lewis acid-catalyzed rearrangement of O-glycoside to C-glycoside. Tetrahedron Lett, 1988, 29: 6935–6938

doi: 10.1016/S0040-4039(00)88479-8
Cornélis A, Laszlo P, Zettler M W. Montmorillonite K10. In: Reich H J, Rigby J H, eds. Handbook of reagents for organic synthesis: acidic and basic reagents. Chichester: John Wiley & Sons, 1999, 262–265
Toshima K, Nagai H, Kasumi K, Kawahara K, Matsumura S. Stereocontrolled glycosidationsusing a heterogeneous solid acid, sulfated zirconia, for the directsyntheses of α- and β-manno- and 2-deoxyglucopyranosides. Tetrahedron, 2004, 60: 5331–5339

doi: 10.1016/j.tet.2004.04.071
Oikawa M, Tanaka T, Fukuda N, Kusumoto S. One-pot preparation and activation of glycosyl trichloroacetimidates:operationally simple glycosylation induced by combined use of solid-supported,reactivity-opposing reagents. Tetrahedron Lett, 2004, 45: 4039–4042

doi: 10.1016/j.tetlet.2004.03.170
Jagath R G, Latha D, Thirupathaiah C, Srinivasa R K. A facile synthesis of 2,3-disubstituted-6-arylpyridinesfrom enaminones using montmorillonite K10 as solid acid support. Tetrahedron Lett, 2005, 46: 301–302

doi: 10.1016/j.tetlet.2004.11.071
Bahulayan D, Das S K, Iqbal J. Montmorillonite K10 clay: an efficientcatalyst for the one-pot stereoselective synthesis of beta-acetamidoketones. J Org Chem, 2003, 68: 5735–5738

doi: 10.1021/jo020734p
Kantevari S, Vuppalapati S V N, Nagarapu L. Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catal Commun, 2007, 8: 1857–1862

doi: 10.1016/j.catcom.2007.02.022
Dintzner M R, McClelland K M, Morse K M, Akroush M H. Montmorillonite clays in organic synthesis: a one-potconversion of phenols to 2,2-dimethylbenzopyrans. Synlett, 2004, 2028–2030

doi: 10.1055/s-2004-830865
Clark J H, Macquarrie D J. Environmentally friendly catalytic methods. Chem Soc Rev, 1996, 25: 303–310

doi: 10.1039/cs9962500303
Laszlo P. Catalysis of organic reactions by inorganic solids. Pure Appl Chem, 1990, 62: 2027–2030

doi: 10.1351/pac199062102027
Nagai H, Sasaki K, Matsumura S, Toshima K. Environmentally benign β-stereoselective glycosidations of glycosyl phosphites using a reusableheterogeneous solid acid, montmorillonite K-10. Carbohydr Res, 2005, 340: 337–353

doi: 10.1016/j.carres.2004.11.025
Fügedi P. Glycosylation Methods. In: Daniel E L, Péter F, eds. The Organic Chemistry of Sugars. Boca Raton: Taylor & Francis Group, 2006, 86–176
Toshima K. Glycosyl Halides. In: Fraser-Reid B O, Tatsuta K, Thiem J, eds. Glycoscience: Chemistry and Chemical Biology, 2nd ed. Berlin: Springer-Verlag, 2008, 429–450

doi: 10.1007/978-3-540-30429-6_10
Shanmugasundaram B, Bose A K, Balasubramanian K K Microwave-induced montmorillonite K10-catalyzed Ferrier rearrangement of tri-O-acetyl-d-galactal: mild, eco-friendly, rapid glycosidation with allylic rearrangement. Tetrahedron Lett, 2002, 43: 6795–6798

doi: 10.1016/S0040-4039(02)01517-4
Brimble M A, Davey R M, McLeod M D, Murphy M. C-glycosylation of oxygenated naphthols with3-dimethylamino-2,3,6-trideoxy-L-arabino-hexopyranose and 3-azido-2,3,6-trideoxy-D- arabino-hexopyranose. Austral J Chem, 2003, 56: 787–794

doi: 10.1071/CH02236
Schmidt R R, Michael J. Facile synthesis of α- and β-O-glycosyl imidates: preparation of glycosides and disaccharides. Angew Chem Int Eng Ed, 1980, 19: 731–732

doi: 10.1002/anie.198007311
Clark J H, Cullen S R, Barlow S J, Bastock T W. Environmentally friendly chemistry using supported reagentcatalysts: structure-property relationships for clayzic. J Chem Soc Perkin Trans 2, 1994, 1117–1130

doi: 10.1039/p29940001117
Onaka M, Shinoda T, Izumi Y, Nolen E. Porphyrin synthesis in clay nanospaces. Chem Lett, 1993, 117–120

doi: 10.1246/cl.1993.117
Yadav G D, Asthana N S, Kamble V S. Cesium-substituted dodecatungstophosphoricacid on K-10 clay for benzoylation of anisole with benzoyl chloride. J Catal, 2003, 217: 88–99
Kim Y, Lee J S, Rhee C H, Kim H K, Chang H. Montmorillonite functionalizedwith perfluorinated sulfonic acid for proton-conducting organic-inorganiccomposite membranes. J Power Sources, 2006, 162: 180–185

doi: 10.1016/j.jpowsour.2006.07.041
Seyama H, Soma M. Bonding-state characterization of the constituent elements of silicate mineralsby X-ray photoelectron spectroscopy. J Chem Soc Faraday Trans 1, 1985, 81: 485–495

doi: 10.1039/f19858100485
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed