Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2010, Vol. 4 Issue (3) : 300-306    https://doi.org/10.1007/s11705-009-0280-8
Research articles
Effect of PEG additives on properties and morphologies of polyetherimide membranes prepared by phase inversion
Jian CHEN,Jiding LI,Xia ZHAN,Xiaolong HAN,Cuixian CHEN,
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
 Download: PDF(345 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This study investigated the effect of poly(ethylene glycol) (PEG) additive as a pore-former on the structure formation of membranes and their permeation properties connected with the changes in thermodynamic and kinetic properties in the phase inversion process. The membranes were prepared by using polyetherimide/N-methyl-2-pyrrolidone/PEG (PEI/NMP/PEG) casting solution and water coagulant. The resulting membranes, prepared by changing the ratio of PEG to PEI, were characterized by scanning electron microscope (SEM) observations, measurements of water flux and γ-globin rejection. The thermodynamic and kinetic properties of the membrane-forming system were studied through viscosity. The pore radius distribution curves were especially obtained by differential scanning calorimetry (DSC). Furthermore, the membranes were characterized for pure water flux and rejection of solute and by SEM observation. The filtration results agreed well with the SEM observations. As expected, PEG with a fixed molecular weight (PEG 600) acted as a pore forming agent, and membrane porosity increased as the PEG content of the casting solution increased.
Issue Date: 05 September 2010
 Cite this article:   
Jiding LI,Jian CHEN,Xia ZHAN, et al. Effect of PEG additives on properties and morphologies of polyetherimide membranes prepared by phase inversion[J]. Front. Chem. Sci. Eng., 2010, 4(3): 300-306.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0280-8
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I3/300
Witte P V, Dijkstra P J, Berg J W, Feijen J. Phase separation processes in polymer solutions in relationto membrane formation. J Membr Sci, 1996, 117: 1–31

doi: 10.1016/0376-7388(96)00088-9
Shigenobu M. Thermodynamics of formation of porous polymeric membranefrom solutions. Polym J, 1991, 23(5): 435–444

doi: 10.1295/polymj.23.435
Altena F W, Smolders C A. Calculation of liquid-liquid phase separation in a ternary systemof a polymer in a mixture of a solvent and a nonsolvent. Macromolecules, 1982, 15: 1491–1497

doi: 10.1021/ma00234a008
Yilmaz L, Mchugh A J. Analysisof nonsolvent-solvent-polymer phase diagrams and their relevance tomembrane formation modeling. J Appl PolymSci, 1986, 31: 997–1018

doi: 10.1002/app.1986.070310404
Koros W J, Fleming G K. Membrane-based gas separation. J MembrSci, 1993, 83: 1–80

doi: 10.1016/0376-7388(93)80013-N
Wang D M, Lin F C, Wu T T, Lai J Y. Formation mechanism of the macrovoids induced by surfactant additives. J Membr Sci, 1998, 142: 191–204

doi: 10.1016/S0376-7388(97)00322-0
Lai J Y, Lin F C, Wang C C, Wang D M. Effect of nonsolvent additives on the porosity and morphology ofasymmetric TPX membranes. J Membr Sci, 1996, 118: 49–61

doi: 10.1016/0376-7388(96)00084-1
Kim J H, Min B R, Park H C, Won J, Kang Y S. Phase behavior and morphologicalstudies of polyimide/PVP/solvent/water systems by phase inversion. J Appl Polym Sci, 2001, 81: 3481–3488

doi: 10.1002/app.1804
Tanihara N, Tanaka K, Kita H, Okamoto K I. Pervaporation of organic liquid mixtures through membranes of polyimidecontaining methyl-substituted phenylenediamine moieties. J Membr Sci, 1994, 95: 161–169

doi: 10.1016/0376-7388(94)00105-7
Bottino A, Camera-Roda G, Capannelli G, Munari S. The formation of microporous polyvinylidene difluoridemembranes by phase separation. J MembrSci, 1991, 57: 1–20

doi: 10.1016/S0376-7388(00)81159-X
Kang Y S, Kim H J, Kim U Y. Asymmetric membrane formation via immersionprecipitation method. I. Kinetic effect. J Membr Sci, 1991, 60: 219–232
Boom R M, Wienk I M, Boomgaard T, Smolders C A. Microstructures in phase inversion membranes. Part 2:The role of a polymeric additive. J MembrSci. 1992, 73: 277–292

doi: 10.1016/0376-7388(92)80135-7
Boom R M, Boomgaard T, Smolders C A. Equilibrium thermodynamicsof a quaternary membrane forming system with two polymers. I: Calculations. Macromolecules, 1994, 27(8): 2034–2040

doi: 10.1021/ma00086a009
Tang B B, Wu D, Xu T. Effect of PEG additives on propertiesand morphologies of membranes prepared from poly(2,6-dimethyl-1,4-phenyleneoxide) by benzyl bromination and in situ amination. J Appl Polym Sci, 2005, 98(6): 2414–2421

doi: 10.1002/app.22425
Liu Y, Hoops G H, Strathman H. Characterisation of morphologycontrolled polyethersulfone hollow fiber membranes by the additionof polyethylene glycol to dope and bore liquid solution. J Membr Sci, 2003, 223: 187–199

doi: 10.1016/S0376-7388(03)00322-3
Xu Z L, Chung T S, Loh K C, Lee B C. Polymeric asymmetric membranes made of polyeterimide/polybenzimidazole/poly(ethyleneglycol) (PEI/PBIPEG) for oil-surfactant-water separation. J Membr Sci, 1999, 158: 41–53

doi: 10.1016/S0376-7388(99)00030-7
Wang F J, Yang Y Y, Zhang X Z, Zhu X, Chung T S, Moochala S. Cellulose acetate membranes for transdermal deliveryof scopolamine base. Mater Sci Eng, 2002, 20: 93–100

doi: 10.1016/S0928-4931(02)00018-8
Artanareeswaran G, Thanikaivelan P, Srinivasn K, Mohan D, Rajendran M. Synthesis, characterization and thermal studies on cellulose acetatemembranes with additives. Eur Polym J, 2004, 40: 2153–2159

doi: 10.1016/j.eurpolymj.2004.04.024
Machado P S, Habert A C, Borges C P. Membrane formation mechanism based onprecipitation kinetics and membrane morphology: flat and hollow fiberpolysulfone membranes. J Membr Sci, 1999, 155(2): 171–183

doi: 10.1016/S0376-7388(98)00266-X
Iza M, Woerly S, Danumah C, Kaliaguine S, Bousmina M. Determination of pore sizedistribution for mesoporous materials and polymeric gels by meansof DSC measurements: thermoporometry. Polym, 2000, 41: 5885–5893

doi: 10.1016/S0032-3861(99)00776-4
Kim I, Lee K. Effect of poly(ethyleneglycol)200 on the formation of a polyetherimide asymmetric membraneand its performance in aqueous solvent mixture permeation. J Membr Sci, 2004, 230: 183–188

doi: 10.1016/j.memsci.2003.11.002
Brun M, Lallemand A, Quinson J F, Eyraud C. A new method for the simultaneous determination of thesize and shape of pores: the thermoporometry. Thermochim Acta, 1977, 21: 59–88

doi: 10.1016/0040-6031(77)85122-8
Leos Z, Gabriel T. Characterization of porous sub-layers in UF membranes by thermoporometry. J Membr Sci, 1987, 32: 329–337

doi: 10.1016/S0376-7388(00)85015-2
Mosqueda-Jimenez D B, Narbaitz R M, Matsuura T, Chowdhury G, Pleizier G, Santerre J P. Influence of processing conditionson the properties of ultrafiltration membranes. J Membr Sci, 2004, 231: 209–224

doi: 10.1016/j.memsci.2003.11.026
Machado D R, Hasson D, Semiat R. Effect of solvent properties on permeateflow through nanofiltration membranes. Part I: Investigation of parametersaffecting solvent flux. J Membr Sci, 1999, 163: 93–102

doi: 10.1016/S0376-7388(99)00158-1
Shukla R, Cheryan M. Performance of ultrafiltration membranes in ethanol-water solutions:effect of membrane conditioning. J MembrSci, 2002, 198: 75–85

doi: 10.1016/S0376-7388(01)00638-X
Khayef M, Fengb C Y, Khulbeb K C, Matsuurab T. Study on the effect of a non-solvent additive on themorphology and performance of ultrafiltration hollow-fiber membranes. Desalination, 2002, 148: 321–327

doi: 10.1016/S0011-9164(02)00724-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed