Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2010, Vol. 4 Issue (3) : 372-381    https://doi.org/10.1007/s11705-010-0005-z
Research articles
Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility
Yakai FENG,Haiyang ZHAO,Li ZHANG,Jintang GUO,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
 Download: PDF(272 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thrombus formation and blood coagulation are serious problems associated with blood contacting products, such as catheters, vascular grafts, artificial hearts, and heart valves. Recent progresses and strategies to improve the hemocompatibility of biomaterials by surface modification using photochemical immobilization and photograft polymerization are reviewed in this paper. Three approaches to modify biomaterial surfaces for improving the hemocompatibility, i.e., bioinert surfaces, immobilization of anticoagulative substances and biomimetic surfaces, are introduced. The biomimetic amphiphilic phosphorylcholine and Arg-Gly-Asp (RGD) sequence are the most effective and most often employed biomolecules and peptide sequence for improving hemocompatibility of material surfaces. The RGD sequence can enhance adhesion and growth of endothelial cells (ECs) on material surfaces and increase the retention of ECs under flow shear stress conditions. This surface modification is a promising strategy for biomaterials especially for cardiovascular grafts and functional tissue engineered blood vessels.
Issue Date: 05 September 2010
 Cite this article:   
Haiyang ZHAO,Yakai FENG,Li ZHANG, et al. Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility[J]. Front. Chem. Sci. Eng., 2010, 4(3): 372-381.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0005-z
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I3/372
Lee J H, Lee H B, Andrade J D. Blood compatibility of polyethylene oxidesurfaces. Progress in Polymer Science, 1995, 20(6): 1043―1079

doi: 10.1016/0079-6700(95)00011-4
Sakuragi M, Tsuzuki S, Hasuda H, Wada A, Matoba K, Kubo I, Ito Y. Synthesis of a photoimmobilizable histidine polymer forsurface modification. Journal of AppliedPolymer Science, 2009, 112(1): 315―319

doi: 10.1002/app.29427
Lamponi S, Di Canio C, Forbicioni M, Barbucci R. Heterotypic interaction of fibroblasts and endothelialcells on restricted area. Journal of BiomedicalMaterials Research, 2010, 92A(2): 733―745

doi: 10.1002/jbm.a.32364
Matsuda T, Sugawara T. Controlof cell adhesion, migration, and orientation on photochemically microprocessedsurfaces. Journal of Biomedical MaterialsResearch, 1996, 32(2): 165―173

doi: 10.1002/(SICI)1097-4636(199610)32:2<165::AID-JBM3>3.0.CO;2-R
Bhattacharya A, Misra B N. Grafting:a versatile means to modify polymers—techniques, factors andapplications. Progress in Polymer Science, 2004, 29(8): 767―814

doi: 10.1016/j.progpolymsci.2004.05.002
He D M, Susanto H, Ulbricht M. Photo-irradiation for preparation,modification and stimulation of polymeric membranes. Progress in Polymer Science, 2009, 34(1): 62―98

doi: 10.1016/j.progpolymsci.2008.08.004
Susanto H, Ulbricht M. Photograftedthin polymer hydrogel layers on PES ultrafiltration membranes: characterization,stability, and influence on separation performance. Langmuir, 2007, 23(14): 7818―7830

doi: 10.1021/la700579x
Yu Y B, Liu L Y, Sun Y F, He C F, Yang W T. Studies on photograftingof triemethylol propane triacrylate onto the surface of LDPE films. Acta Polymerica Sinica, 2006(3): 455―460
Janorkar A V, Proulx S E, Metters A T, Hirt D E. Surface-confined photopolymerization of single- and mixed-monomersystems to tailor the wettability of poly(L-lactide) film. Journal of Polymer Science. Part A, Polymer Chemistry, 2006, 44(22): 6534―6543

doi: 10.1002/pola.21700
Zhu S Q, Hirt D E. Improvingthe wettability of deep-groove polypropylene fibers by photografting. Textile Research Journal, 2009, 79(6): 534―547

doi: 10.1177/0040517508092017
Suri S, Singh A, Schmidt C E. Photofunctionalization of materials topromote protein and cell interactions for tissue-engineering applications. In: Puleo D A, Bizios R, eds. Biological Interactions on Materials Surfaces. New York: Springer, 2009, 297―318

doi: 10.1007/978-0-387-98161-1_15
Fax?lv L, Ekblad T, Liedberg B, Lindahl T L. Blood compatibility of photografted hydrogel coatings. Acta Biomaterialia, 2010
Yamada K, Takeda S, Hirata M. Improvement of autohesiveand adhesive properties of polyethylene plates by photografting withglycidyl methacrylate. Journal of AppliedPolymer Science, 2007, 103(1): 493―500

doi: 10.1002/app.25076
Gutierrez-Villarreal M H, Ulloa-Hinojosa M G, Gaona-Lozano J G. Surface functionalization of poly(lactic acid) film by UV-photograftingof N-vinylpyrrolidone. Journal of Applied Polymer Science, 2008, 110(1): 163―169

doi: 10.1002/app.28000
Kyomoto M, Moro T, Takatori Y, Kawaguchi H, Nakamura K, Ishihara K. Self-initiated surface grafting with poly(2-methacryloyloxyethylphosphorylcholine) on poly(ether-ether-ketone). Biomaterials, 2010, 31(6): 1017―1024

doi: 10.1016/j.biomaterials.2009.10.055
Dai Q W, Xu Z K, Wu J. A novel approach for the surface modification of polymericmembrane with phospholipid polymer. ChineseChemical Letters, 2004, 15(8): 993―996
Bae J W, Choi J H, Kim T E, Park K D, Kim J Y, Park Y D, Sun K. Heparinizedmicropatterned surfaces for the spatial control of human mesenchymalstem cells. Journal of Bioactive and CompatiblePolymers, 2009, 24(6): 493―506

doi: 10.1177/0883911509349143
Nakayama Y, Matsuda T. Photocurablesurgical tissue adhesive glues composed of photoreactive gelatin andpoly(ethylene glycol) diacrylate. Journalof Biomedical Materials Research, 1999, 48(4): 511―521

doi: 10.1002/(SICI)1097-4636(1999)48:4<511::AID-JBM17>3.0.CO;2-V
Lin W C, Yu D G, Yang M C. Blood compatibility of thermoplasticpolyurethane membrane immobilized with water-soluble chitosan/dextransulfate. Colloid Surface B: Biointerfaces, 2005, 44(2―3): 82―92
Nagase K, Kobayashi J, Pkano T. Temperature-responsive intelligentinterfaces for biomolecular separation and cell sheet engineering. Journal of the Royal Society, Interface, 2009, 6(3 Suppl_3): S293―S309
Guan J J, Gao C, Feng L X, Sheng J C. Surface photo-grafting of polyurethane with 2-hydroxyethyl acrylatefor promotion of human endothelial cell adhesion and growth. Journal of Biomaterials Science. Polymer Edition, 2000, 11(5): 523―536

doi: 10.1163/156856200743841
Wang Y J, Ke Y, Ren L, Wu G, Chen X F, Zhao Q C. Surface engineering of PHBV by covalent collagen immobilizationto improve cell compatibility. Journalof Biomedical Materials Research. Part A, 2009, 88A(3): 616―627

doi: 10.1002/jbm.a.31858
Rana D, Matsuura T. Surfacemodifications for antifouling membranes. Chemical Reviews, 2010, doi:10.1021/cr800208y

doi: 10.1021/cr800208y
Dai L, Mau A W H. Surfaceand interface control of polymeric biomaterials, conjugated polymers,and carbon nanotubes. Journal of PhysicalChemistry B, 2000, 104(9): 1891―1915
Altankov G, Thom V, Groth T, Jankova K, Jonsson G, Ulbricht M. Modulating the biocompatibility of polymer surfaces withpoly(ethylene glycol): effect of fibronectin. Journal of Biomedical Materials Research, 2000, 52(1): 219―230

doi: 10.1002/1097-4636(200010)52:1<219::AID-JBM28>3.0.CO;2-F
Chen H, Yuan L, Song W, Wu Z, Li D. Biocompatible polymer materials:role of protein-surface interactions. Progressin Polymer Science, 2008, 33(11): 1059―1087

doi: 10.1016/j.progpolymsci.2008.07.006
Iguerb O, Bertrand P. Graftphotopolymerization of polyethylene glycol monoacrylate (PEGA) onpoly(methyl methacrylate) (PMMA) films to prevent BSA adsorption. Surface and Interface Analysis, 2008, 40(3―4): 386―390
Joung Y K, Choi J H, Bae J W, Park K D. Hyper-branched poly(poly(ethylene glycol)methacrylate)-grafted surfacesby photo-polymerization with iniferter for bioactive interfaces. Acta Biomaterialia, 2008, 4(4): 960―966

doi: 10.1016/j.actbio.2008.02.008
Sebra R P, Reddy S K, Masters K S, Bowman C N, Anseth K S. Controlled polymerizationchemistry to graft architectures that influence cell-material interactions. Acta Biomaterialia, 2007, 3(2): 151―161

doi: 10.1016/j.actbio.2006.07.010
Stachowiak T B, Svec F, Frechet J. Patternable protein resistant surfacesfor multifunctional microfluidic devices via surface hydrophilizationof porous polymer monoliths using photografting. Chemistry of Materials, 2006, 18(25): 5950―5957

doi: 10.1021/cm0617034
Francois P, Vaudaux P, Nurdin N, Mathieu H J, Descouts P, Lew D P. Physical and biological effectsof a surface coating procedure on polyurethane catheters. Biomaterials, 1996, 17(7): 667―678

doi: 10.1016/0142-9612(96)86736-6
Wetzels G M R, Koole L H. Photoimmobilisationof poly(N-vinylpyrrolidinone) asa means to improve haemocompatibility of polyurethane biomaterials. Biomaterials, 1999, 20(20): 1879―1887
Mao C, Zhang C, Qiu Y Z, Zhu A P, Shen J, Lin S C. Introduction of anticoagulation group to polypropylenefilm by radiation grafting and its blood compatibility. Applied Surface Science, 2004, 228(1―4): 26―33
Mao C, Zhao W B, Zhu A P, Shen J, Lin S C. A photochemical method forthe surface modification of poly(vinyl chloride) with O-butyrylchitosan to improve blood compatibility. Process Biochemistry (Barking, London, England), 2004, 39(9): 1151―1157

doi: 10.1016/S0032-9592(03)00225-5
Mao C, Zhao W B, Zhu C H, Zhu A P, Shen J, Lin S C. In vitro studies of platelet adhesion on UV radiation-treatednylon surface. Carbohydrate Polymers, 2005, 59(1): 19―25

doi: 10.1016/j.carbpol.2004.08.016
Bhat V T, James N R, Jayakrishnan A. A photochemical method forimmobilization of azidated dextran onto aminated poly(ethylene terephthalate)surfaces. Polymer International, 2008, 57(1): 124―132

doi: 10.1002/pi.2332
Ravi S, Chaikof E L. Biomaterials for vascular tissue engineering. Regenerative Medicine, 2010, 5(1): 107―120

doi: 10.2217/rme.09.77
Aldenhoff Y B, Blezer R, Lindhout T, Koole L H. Photo-immobilization of dipyridamole (Persantin) at thesurface of polyurethane biomaterials: reduction of in-vitro thrombogenicity. Biomaterials, 1997, 18(2): 167―172

doi: 10.1016/S0142-9612(96)00095-6
Zhu A P, Ming Z, Jian S. Blood compatibility of chitosan/heparincomplex surface modified ePTFE vascular graft. Applied Surface Science, 2005, 241(3―4): 485―492
Zhao G W, Chen Y S, Dong T, Wang X L. Surface modification of polyethylene by heparin for improvement ofantithrombogenicity. Plasma Science andTechnology, 2007, 9(2): 202―205

doi: 10.1088/1009-0630/9/2/18
Li D, Chen H, Glenn McClung W, Brash J L. Lysine-PEG-modified polyurethane as a fibrinolytic surface:Effect of PEG chain length on protein interactions, platelet interactionsand clot lysis. Acta Biomaterialia, 2009, 5(6): 1864―1871
Chen H, Zhang Y, Li D, Hu X Y, Wang L, McClung W G, Brash J L. Surfaces having dual fibrinolyticand protein resistant properties by immobilization of lysine on polyurethanethrough a PEG spacer. Journal of BiomedicalMaterials Research, 2009, 90A(3): 940―946

doi: 10.1002/jbm.a.32152
McClung W G, Babcock D E, Brash J L. Fibrinolytic properties oflysine-derivatized polyethylene in contact with flowing whole blood(Chandler Loop model). Journal of BiomedicalMaterials Research. Part A, 2007, 81A(3): 644―651

doi: 10.1002/jbm.a.31018
McClung W G, Clapper D L, Anderson A B, Babcock D E, Brash J L. Interactionsof fibrinolytic system proteins with lysine containing surfaces. Journal of Biomedical Materials Research. PartA, 2003, 66A(4): 795―801

doi: 10.1002/jbm.a.10017
Lewis A L. Phosphorylcholine-based polymers and their use in theprevention of biofouling. Colloids andSurfaces. B, Biointerfaces, 2000, 18(3―4): 261―275

doi: 10.1016/S0927-7765(99)00152-6
Ishihara K, Tsuino R, Hamada M, Toyoda N, Iwasaki Y. Stabilizedliposomes with phospholipid polymers and their interactions with bloodcells. Colloids and Surfaces. B, Biointerfaces, 2002, 25(4): 325―333

doi: 10.1016/S0927-7765(02)00006-1
Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymersreduce protein adsorption? Journal of BiomedicalMaterials Research, 1998, 39(2): 323―330

doi: 10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
Huangfu P B, Gong M, Zhang C, Yang S, Zhao J, Gong Y K. Cell outer membrane mimetic modification of a cross-linkedchitosan surface to improve its hemocompatibility. Colloids and Surfaces. B, Biointerfaces, 2009, 71(2): 268―274

doi: 10.1016/j.colsurfb.2009.02.014
Seo J H, Matsuno R, Takai M, Ishihara K. Cell adhesion on phase-separated surface of block copolymercomposed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane). Biomaterials, 2009, 30(29): 5330―5340

doi: 10.1016/j.biomaterials.2009.06.031
Xu Y, Takai M, Ishihara K. Protein adsorption and cell adhesionon cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholinecopolymer surfaces. Biomaterials, 2009, 30(28): 4930―4938

doi: 10.1016/j.biomaterials.2009.06.005
Hoven V P, Chombanpaew K, Iwasaki Y, Tasakorn P. Improving blood compatibility of natural rubber by UV-inducedgraft polymerization of hydrophilic monomers. Journal of Applied Polymer Science, 2009, 112(1): 208―217

doi: 10.1002/app.29408
Sawada S, Sakaki S, Iwasaki Y, Nakabayashi N, Ishihara K. Suppressionof the inflammatory response from adherent cells on phospholipid polymers. Journal of Biomedical Materials Research. PartA, 2003, 64A(3): 411―416

doi: 10.1002/jbm.a.10433
Patel J D, Iwasaki Y, Ishihara K, Anderson J M. Phospholipid polymer surfaces reduce bacteria and leukocyteadhesion under dynamic flow conditions. Journal of Biomedical Materials Research. Part A, 2005, 73A(3): 359―366

doi: 10.1002/jbm.a.30302
Sawada S I, Iwasaki Y, Nakabayashi N, Ishihara K. Stress response of adherent cells on a polymer blendsurface composed of a segmented polyurethane and MPC copolymers. Journal of Biomedical Materials Research. PartA, 2006, 79A(3): 476―484

doi: 10.1002/jbm.a.30820
Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A. Dimensionof poly(2-methacryloyloxyethyl phosphorylcholine) in aqueous solutionswith various ionic strength. ChemistryLetters, 2006, 35(11): 1310―1311

doi: 10.1246/cl.2006.1310
Lam J K W, Ma Y, Armes S P, Lewis A L, Baldwin T, Stolnik S. Phosphorylcholine-polycation diblock copolymers as syntheticvectors for gene delivery. Journal of ControlledRelease, 2004, 100(2): 293―312

doi: 10.1016/j.jconrel.2004.08.028
Chen M, Briscoe W H, Armes S P, Klein J. Lubrication at physiological pressures by polyzwitterionicbrushes. Science, 2009, 323(5922): 1698―1701

doi: 10.1126/science.1169399
Van der Heiden A P, Goebbels D, Pijpers A P, Koole L H. A photochemical method for the surface modification ofpoly(etherurethanes) with phosphorylcholine-containing compounds toimprove hemocompatibility. Journal of BiomedicalMaterials Research. Part A, 1997, 37A(2): 282―290

doi: 10.1002/(SICI)1097-4636(199711)37:2<282::AID-JBM19>3.0.CO;2-G
Konno T, Hasuda H, Ishihara K, Ito Y. Photo-immobilization of a phospholipid polymer for surfacemodification. Biomaterials, 2005, 26(12): 1381―1388

doi: 10.1016/j.biomaterials.2004.04.047
Goda T, Matsuno R, Konno T, Takai M, Ishihara K. Photograftingof 2-methacryloyloxyethyl phosphorylcholine from polydimethylsiloxane:tunable protein repellency and lubrication property. Colloids and Surfaces. B, Biointerfaces, 2008, 63(1): 64―72

doi: 10.1016/j.colsurfb.2007.11.014
Herring M B, Gardner A L, Glover J. A single-staged techniquefor seeding vascular grafts with autogenous endothelium. Surgery, 1978, 84(4): 498―504
de Mel A, Jell G, Stevens M M, Seifalian A M. Biofunctionalization of biomaterials for accelerated in situ endothelialization:a review. Biomacromolecules, 2008, 9(11): 2969―2979

doi: 10.1021/bm800681k
Monchaux E, Vermette P. Effectsof surface properties and bioactivation of biomaterials on endothelialcells. Frontiers in Bioscience, 2010, S2(1): 239―255 (Schol Ed)

doi: 10.2741/s61
Zhu Y B, Gao C Y, Guan J J, Shen J C. Engineering porous polyurethane scaffolds by photografting polymerizationof methacrylic acid for improved endothelial cell compatibility. Journal of Biomedical Materials Research. PartA, 2003, 67A(4): 1367―1373

doi: 10.1002/jbm.a.20058
Thom V H, Altankov G, Groth Th, Jankova K, Jonsson G, Ulbricht M. Optimizing cell-surface interactionsby photografting of poly(ethylene glycol). Langmuir, 2000, 16(6): 2756―2765

doi: 10.1021/la990303a
Janorkar A V, Fritz Jr E W, Burg K J L, Metters A T, Hirt D E. Graftingamine-terminated branched architectures from poly(l-lactide) filmsurfaces for improved cell attachment. J Biomed Mater Res B, 2007, 81B(1): 142―152

doi: 10.1002/jbm.b.30647
Ohmuro-Matsuyama Y, Tatsu Y. Photocontrolledcell adhesion on a surface functionalized with a caged arginine-glycine-aspartatepeptide. Angewandte Chemie, 2008, 120(39): 7637―7639

doi: 10.1002/ange.200802731
Qin T W, Yang Z M, Wu Z Z, Xie H Q, Qin J, Cai S X. Adhesion strength of human tenocytes to extracellularmatrix component-modified poly(DL-lactide-co-glycolide) substrates. Biomaterials, 2005, 26(33): 6635―6642

doi: 10.1016/j.biomaterials.2005.04.023
Williams S K, Kleinert L B, Hagen K M, Clapper D L. Covalent modification of porous implants using extracellularmatrix proteins to accelerate neovascularization. Journal of Biomedical Materials Research. Part A, 2006, 78A(1): 59―65

doi: 10.1002/jbm.a.30659
Zhang H, Lin C Y, Hollister S J. The interaction between bonemarrow stromal cells and RGD-modified three-dimensional porous polycaprolactonescaffolds. Biomaterials, 2009, 30(25): 4063―4069

doi: 10.1016/j.biomaterials.2009.04.015
Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterialsfor stimulated cell adhesion and beyond. Biomaterials, 2003, 24(24): 4385―4415

doi: 10.1016/S0142-9612(03)00343-0
Chung T W, Lu Y F, Wang S S, Lin Y S, Chu S H. Growth of human endothelialcells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) chitosans. Biomaterials, 2002, 23(24): 4803―4809

doi: 10.1016/S0142-9612(02)00231-4
Lin Y S, Wang S S, Chung T W, Wang Y H, Chiou S H, Hsu J J, Chou N K, Hsieh K H, Chu S H. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Aspphotochemically grafted in polyethylene glycol modified polyurethane. Artificial Organs, 2001, 25(8): 617―621

doi: 10.1046/j.1525-1594.2001.025008617.x
Li J H, Ding M M, Fu Q, Tan H, Xie X Y, Zhong Y P. A novel strategy to graft RGD peptide on biomaterials surfaces forendothelization of small-diamater vascular grafts and tissue engineeringblood vessel. J Mater Sci-mater M, 2008, 19(7): 2595―2603

doi: 10.1007/s10856-007-3354-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed