Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2010, Vol. 4 Issue (4) : 404-410    https://doi.org/10.1007/s11705-010-0513-x
RESEARCH ARTICLE
Experimental investigations on combustion characteristics of syngas composed of CH4, CO, and H2
Qingwei FAN, Shien HUI, Qulan ZHOU(), Qinxin ZHAO, Tongmo XU
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(490 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The residual gas and remained raw gas in dual gas resources polygeneration system are quite complex in components (mainly CH4, CO, and H2), and these results to the distinguished differences in combustion reaction. Experimental investigations on basic combustion characteristics of syngas referred above are conducted on a laboratory-scale combustor with flame temperature and flue gas composition measured and analyzed. Primary air coefficient (PA), total air coefficient (TA), and components of the syngas (CS) are selected as key factors, and it is found that PA dominates mostly the ignition of syngas and NOx formation, while TA affects the flue gas temperature after high temperature region and NOx formation trend to be positive as H2/CO components increase. The results provide references for industrial utilization.

Keywords dual gas resources polygeneration      lean premixed combustion      residual gas      remained raw gas      NOx emission     
Corresponding Author(s): ZHOU Qulan,Email:zql@mail.xjtu.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Qingwei FAN,Shien HUI,Qulan ZHOU, et al. Experimental investigations on combustion characteristics of syngas composed of CH4, CO, and H2[J]. Front Chem Eng Chin, 2010, 4(4): 404-410.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0513-x
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I4/404
Fig.1  Experimental set up
nameflow rate / (× 10-5m3·s-1)nameflow rate / (× 10-5m3·s-1)
pure NG2.43pure CO6.33
pure H27.43H2CO3.42
NGH21.833.42
1.83NGCOH21.42
NGCO1.761.42
1.761.42
Tab.1  Flow rates and components of syngas
proportionflow rate / (× 10-5m3·s-1)
3 ∶ 12 ∶ 11 ∶ 11 ∶ 21 ∶ 3
NG2.192.091.831.471.23
H20.731.051.832.943.68
NG2.162.041.761.381.13
CO0.721.021.762.753.39
H25.344.683.422.221.65
CO1.782.333.424.434.93
proportionflow rate /(× 10-5m3·s-1)
1 ∶ 1 ∶ 11 ∶ 1 ∶ 21 ∶ 2 ∶ 11 ∶ 2 ∶ 22 ∶ 1 ∶ 12 ∶ 1 ∶ 22 ∶ 2 ∶ 1
NG1.421.191.161.001.791.601.57
CO1.421.192.322.010.900.801.57
H21.422.381.162.010.901.600.79
Tab.2  Flow rates and proportions of syngas
Fig.2  Temperatures at the center of the burner exit
Fig.3  Temperature profiles for different PA of various syngas proportions
Fig.4  NO emissions for different PA of various syngas proportions
Fig.5  Temperature profiles for different TA of syngas proportion is 1∶ 1∶ 1
Fig.6  NO emissions for different TA of various syngas proportions
Fig.7  Temperature profiles for various syngas at PA= 0.4, TA= 1.2
Fig.8  NO emissions for various syngas with different proportions at PA= 0.4, TA= 1.2
1 Li Z, Ni W D, Zheng H T, Ma L W. Polygeneration energy system based on coal gasification. Energy for Sustainable Development , 2003, VII: 57–62
2 Sun S E, Jin H G, Gao L, Han W. Study on a multifunctional energy system producing coking heat, methanol and electricity. Fuel , 2009, (in press)
doi: 10.1016/j.fuel.2009.05.012
3 Zhang G J, Dong Y, Feng M R, Zhang Y F, Zhao W, Cao H C. CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst. Chemical Engineering Journal , 2009, (in press)
doi: 10.1016/j.cej.2009.04.005
4 Ju S G, Miao M Q, Chang L P, Li F, Xie K C. Desulfurization matching with coal poly-generation system based on dual gas resources. Fuel , 2009, (in press)
doi: 10.1016/j.fuel.2009.03.026
5 Flamme M. Low NOx combustion technologies for high temperature applicatios. Energy Conversion and Management , 2001, 42(15-17): 16
6 Külsheimer C, Buchner H. Combustion dynamics of turbulent swirling flames. Combustion and Flame , 2002, 131(1-2): 70–84
doi: 10.1016/S0010-2180(02)00394-2
7 Chen Y C, Bilger R W. Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion. II. Lean hydrogen/air Bunsen flames. Combustion and Flame , 2004, 138(1-2): 155–174
doi: 10.1016/j.combustflame.2004.04.009
8 Fichera A, Losenno C, Pagano A. Experimental analysis of thermo-acoustic combustion instability. Applied Energy , 2001, 70(2): 179–191
doi: 10.1016/S0306-2619(01)00020-4
9 FicheraA, Losenno C, Pagano A. Clustering of chaotic dynamics of a lean gas-turbine combustor. Applied Energy , 2001, 69(2): 101–117
doi: 10.1016/S0306-2619(00)00067-2
10 Fritsche D, Furi M, Boulouchos K. An experimental investigation of thermoacoustic instabilities in a premixed swirl-stabilized flame. Combustion and Flame , 2007, 151(1-2): 29–36
doi: 10.1016/j.combustflame.2007.05.012
11 Robert C S, Philip C M, David G N, John C K. NOx and N2O in lean-premixed jet-stirred flames. Combustion and Flame , 1995, 100(3): 440–449
doi: 10.1016/0010-2180(94)00070-9
12 Shy S S, Chen Y C, Yang C H, Liu C C, Huang C M. Effects of H2 or CO2 addition, equivalence ratio, and turbulent straining on turbulent burning velocities for lean premixed methane combustion. Combustion and Flame , 2008, 153(4): 510–524
doi: 10.1016/j.combustflame.2008.03.014
13 Hawkes E R, Chen J H. Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames. Combustion and Flame , 2004, 138(3): 242–258
doi: 10.1016/j.combustflame.2004.04.010
14 Jackson G S, Sai R, Plaia J M, Boggs C M, Kiger K T. Influence of H2 on the response of lean premixed CH4 flames to high strained flows. Combustion and Flame , 2003, 132(3): 503–511
doi: 10.1016/S0010-2180(02)00496-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed