Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (3) : 303-307    https://doi.org/10.1007/s11705-010-0565-y
RESEARCH ARTICLE
Ag/PMMA hollow waveguide for solar energy transmission
He LAN, Jianjun HAN(), Hongping CHEN, Xiujian ZHAO
Key Lab of Silicate Materials Science and Engineering of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper describes an elaborate study on obtaining Ag/PMMA (polymethyl methacrylate) leaky hollow waveguide which has a large aperture and low loss in transmitting solar energy. Through analyses and comparison, a quartz capillary with the inner diameter of 2 mm was chosen as hollow waveguide. We used the xenon light source, which has the similar spectrum as the sunlight to test and analyze the performance of the Ag/PMMA leakage hollow waveguide. The results are consistent with the transmitted theory of the dielectric/metal leaky type well. Meanwhile, the Ag/PMMA leaky-type hollow waveguide in this work had good qualities. Therefore, it will be a satisfactory medium for solar energy transmission.

Keywords hollow waveguide      transmit the solar energy      Ag/PMMA multiple film      parabolic collector     
Corresponding Author(s): HAN Jianjun,Email:hanjj@whut.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
He LAN,Jianjun HAN,Hongping CHEN, et al. Ag/PMMA hollow waveguide for solar energy transmission[J]. Front Chem Sci Eng, 2011, 5(3): 303-307.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0565-y
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I3/303
Fig.1  The collecting device
Fig.2  The change of reflectivity
Fig.3  The SEM results about thickness of Ag
sample numberPMMA’s concentrationreaction timeflow speed
E-10.25%
E-20.5%30 s2.5 mL/min
E-31%
Tab.1  Reaction conditions for PMMA
Fig.4  The SEM results between the thickness and PMMA surface
length of hollow waveguide/cm1208040
out-put energy /mW4.54.95.8
cut length /cm04080
direct attenuation loss α /(dB·m-1)0.921.161.10
Tab.2  The direct attenuation loss of Ag hollow waveguide
length of hollow waveguide/cm1208040
out-put energy/mW6.06.97.7
cut length/cm04080
direct attenuation loss α/(dB·m-1)1.521.191.35
Tab.3  The direct attenuation loss of Ag/PMMA hollow waveguide
curvature/(°)020456090
length of hollow waveguide/cm6060606060
out-put energy/mW5.45.14.84.53.9
bending loss αL /(dB·m-1)00.410.470.621.04
Tab.4  The bending loss of Ag hollow waveguide
curvature/(°)020456090
length of hollow waveguide/cm6060606060
out-put energy/mW7.26.96.56.05.4
bending loss αL/(dB·m-1)00.310.430.580.76
Tab.5  The bending loss of Ag/PMMA hollow waveguide
Fig.5  The relationship between bending curvature and loss of Ag and Ag/PMMA hollow waveguide
1 Krishen K. Future trends in antennas and propagation for the US space program. Antennas and Propagation Magazine, IEEE , 1994, 36(1): 31–35
doi: 10.1109/74.262632
2 Harrington J A. Infrared Fiber Optics. OSA Handbook . New York: McGraw Hill, 1992, 3: 8–9
3 Harrington J A. A review of IR transmitting hollow waveguides. Fiber and Integrated Optics , 2000, 19(3): 211–227
doi: 10.1080/01468030050058794
4 Miyagi M, Hongo A, Aizawa Y, Kawakami S. Fabrication of germanium coated nickel hollow waveguides for infrared transmission. Applied Physics Letters , 1983, 43(5): 430–432
doi: 10.1063/1.94377
5 Croitoru N, Dror J, Gannot I. Characterization of hollow fibers for the transmission of infrared radiation. Applied Optics , 1990, 29(12): 1805–1809
doi: 10.1364/AO.29.001805
6 Abel T, Hirsch J, Harrington J A. Hollow glass waveguides for broadband infrared transmission. Optics Letters , 1994, 19(14): 1034–1036
doi: 10.1364/OL.19.001034
7 Gregory C C, Harrington J A. Attenuation, modal, and polarization properties of n<1, hollow dielectric waveguides. Applied Optics , 1993, 32(27): 5302–5309
doi: 10.1364/AO.32.005302
8 Harrington J A, Gregory C C. Hollow sapphire fibers for the delivery of CO(2) laser energy. Optics Letters , 1990, 15(10): 541–543
doi: 10.1364/OL.15.000541
9 Dahan R, Dror J, Croitoru N. Characterization of chemically formed silver iodide layers for hollow infrared guides. Materials Research Bulletin , 1992, 27(6): 761–766
doi: 10.1016/0025-5408(92)90084-D
10 Wang Y, Shi Y W, Matsuura Y, Miyagi M. Small-bore fluorocarbon polymer-coated silver hollow glass waveguide for Er: YAG laser light. Optics & Laser Technology , 1997, 29(8): 455–461
doi: 10.1016/S0030-3992(97)00055-8
11 Wang Y, Matsuura Y, Miyagi M. Robust hollow devices and waveguides for Er: YAG laser radiation. Optics & Laser Technology , 1997, 29(8): 449–453
doi: 10.1016/S0030-3992(97)00053-4
12 Feuermann D, Jeffrey M G. Solar fiber-optic mini-dishes: a new approach to the efficient collection of sunlight. Solar Energy , 1999, 65(3): 159–170
doi: 10.1016/S0038-092X(98)00129-7
13 Feuermann D, Jeffrey M G, Mahmoud H. Solar fiber-optic mini-dish concentrators: first experimental results and field experience. Solar Energy , 2002, 72(6): 459–472
doi: 10.1016/S0038-092X(02)00025-7
14 Abe Y, Shi Y W, Matsuura Y, Miyagi M. Flexible small-bore hollow fibers with an inner polymer coating. Optics Letters , 2000, 25(3): 150–152
doi: 10.1364/OL.25.000150
15 Shi G, Han J, Zhang Z, Song H, Lee B. Pretreatment effect on the synthesis of Ag-coated Al2O3 powders by electroless deposition process. Surface and Coatings Technology , 2005, 195(2-3): 333–337
doi: 10.1016/j.surfcoat.2004.08.186
16 Welford W T, Winston R. High Collection Nonimaging Optics. San Diego: Academic Press, 1989, 50–58
17 Decher G, Schlenoff J B. Multilayer Thin Films. Weinheim: Wiley-VCH, 2003, 472–475
18 Schaefers S, Rast L, Stanishevsky A. Electroless silver plating on spin-coated silver nanoparticle seed layers. Materials Letters , 2006, 60(5): 706–709
doi: 10.1016/j.matlet.2005.05.085
19 Kim J Y, Shin D H, Ihn K J. Synthesis of poly(urethane acrylate-co-styrene) films containing silver nanoparticles by a simultaneous copolymerization/in situ electron transfer reaction. Macromolecular Chemistry and Physics , 2005, 206(7): 794–801
doi: 10.1002/macp.200400467
20 Snitzer E. Cylindrical dielectric waveguides modes. Journal of the Optical Society of America , 1961, 51(5): 491–498
doi: 10.1364/JOSA.51.000491
21 Marcatili E, Schmeltzer R. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell System Technical Journal , 1964, 43: 1783–1809
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed