Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (2) : 258-263    https://doi.org/10.1007/s11705-010-1014-7
RESEARCH ARTICLE
Morphological and mechanical characterization of a PMMA/CdS nanocomposite
Vishal MATHUR(), Manasvi DIXIT, K.S. RATHORE, N. S. SAXENA, K.B. SHARMA
Semi-conductor & Polymer Science Laboratory, 5–6, Vigyan Bhawan, University of Rajasthan, Rajasthan 302004, India
 Download: PDF(276 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thick film of poly(methyl methacrylate) (PMMA)/CdS nanocomposite have been synthesized by the solution casting process. The nanostructure of the CdS particles has been ascertained through the small angle X-ray scattering (SAXS) technique. The surface morphological characterization of the PMMA/CdS nanocomposite has been done through scanning electron microscopy (SEM) analysis. The variation of mechanical loss factor (Tanδ) with temperature and tensile properties of prepared samples have been studied using Dynamic Mechanical Analyzer (DMA). This study reveals that the glass transition temperature (Tg), Young’s modulus, and fracture energy of the PMMA/CdS nanocomposite are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanoparticles and the matrix of PMMA.

Keywords poly(methyl methacrylate) (PMMA)      filler nanoparticles      polymer semiconducting nanocomposite      tensile properties      glass transition temperature     
Corresponding Author(s): MATHUR Vishal,Email:wishalmathur@yahoo.co.in   
Issue Date: 05 June 2011
 Cite this article:   
Vishal MATHUR,Manasvi DIXIT,K.S. RATHORE, et al. Morphological and mechanical characterization of a PMMA/CdS nanocomposite[J]. Front Chem Sci Eng, 2011, 5(2): 258-263.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-1014-7
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I2/258
Fig.1  WAXS pattern of CdS nanoparticles
Fig.2  WAXS pattern of PMMA/CdS nanocomposite
Fig.3  SAXS pattern of PMMA & PMMA/CdS nanocomposite
Fig.4  Particle size distribution curves for PMMA/CdS nanocomposite
Fig.5  SEM micrographs of (a) PMMA (b) PMMA/CdS
Fig.6  Variation of Tan with temperature of PMMA (a) and PMMA/CdS (b)
Fig.7  Tensile stress versus strain curves of PMMA (a) and PMMA/CdS (b)
S.N.samplepure PMMAPMMA/CdS
1Young’s modulus/GPa6.028.55
2ultimate tensile strength/MPa7.6312.31
3fracture energy/J0.0180.24
4fracture strain/%1.225.94
Tab.1  The results of tensile performance of PMMA & PMMA/CdS samples
1 Wang L, Liu Y S, Jiang X, Qin D H, Cao Y. Enhancement of photovoltaic characteristics using a suitable solvent in hybrid polymer/multiarmed CdS nanorods solar cells. Journal of Physical Chemistry C , 2007, 111(26): 9538–9542
doi: 10.1021/jp0715777
2 Kundu S, Liang H. Photochemical synthesis of electrically conductive CdS nanowires on DNA scaffolds. Advanced Materials , 2008, 20(4): 826–831
doi: 10.1002/adma.200702162
3 Hsu Y J, Lu S Y, Lin Y F. Spontaneous reduction of metal ions initiated by ethylenediamine-capped CdS nanowires: a sensing mechanism revealed. Chemistry of Materials , 2008, 20(9): 2854–2856
doi: 10.1021/cm7030703
4 Lee J C, Lee W J, Han S H, Kim T G, Sung Y M. Synthesis of hybrid solar cells using CdS nanowire array grown on conductive glass substrates. Electrochemistry Communications , 2009, 11(1): 231–234
doi: 10.1016/j.elecom.2008.11.021
5 Rong M Z, Zhang M Q, Liang H C. Zeng H M. Surface modification and particles size distribution control in nano-CdS/polystyrene composite film. Chemical Physics , 2003, 286(2-3): 267–276
doi: 10.1016/S0301-0104(02)00928-X
6 Zeng J H, Yang J, Zhu Y, Liu Y F, Qian Y T, Zheng H G. Nanocomposite of CdS particles in polymer rods fabricated by a novel hydrothermal polymerization and simultaneous sulfidation technique. Chemical Communications , 2001, 15: 1332–1333
doi: 10.1039/b100632k
7 Leventis H C, King S P, Sudlow A, Hill M S, Molloy K C, Haque S A. Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Letters , 2010, 10(4): 1253–1258
doi: 10.1021/nl903787j
8 Chen L, Zhu J, Qing L, Chen S, Wang Y R. Controllable synthesis of functionalized CdS nanocrystals and CdS/PMMA nanocomposite hybrids. European Polymer Journal , 2007, 43(11): 4593–4601
doi: 10.1016/j.eurpolymj.2007.08.008
9 Pentimalli M, Antolini F, Bauer E M, Capitani D, Di Luccio T, Viel S. A solid state nuclear magnetic resonance study on the thermolytic synthesis of CdS nanoparticles in a polystyrene matrix. Materials Letters , 2006, 60(21-22): 2657–2661
doi: 10.1016/j.matlet.2006.01.060
10 Rathore K S, Patidar D, Janu Y, Saxena N S, Sharma K B, Sharma T P. Structural and optical characterization of chemically synthesized ZnS nanoparticles. Chalcogenide Letters , 2008, 5(6): 105–110
11 Dixit M, Gupta S, Mathur V, Rathore K S, Sharma K B, Saxena N S. Study of glass transition temperature of PMMA and CdS-PMMA composite. Chalcogenide Letters , 2009, 6(3): 131–136
12 Jelcia Z, Holjevac-Grguric T, Rek V. Mechanical properties and fractal morphology of high-impact polystyrene/poly(styrene-b-butadiene-b-styrene) blends. Polymer Degradation and Stability , 2005, 90(2): 295–302
doi: 10.1016/j.polymdegradstab.2005.02.021
13 Ash B J, Schadler L S, Siegel R W. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Materials Letters , 2002, 55(1-2): 83–87
doi: 10.1016/S0167-577X(01)00626-7
14 Choi S W, Yoon J H, An M J, Chae W S, Cho H M, Choi M G, Kim Y R. Organic nanotube induced by photocorrosion of CdS nanorod. Bulletin of the Korean Chemical Society , 2004, 25(7): 983–985
doi: 10.5012/bkcs.2004.25.7.983
15 Lu X F, Mao H, Zhang W J, Wang C. Synthesis and characterization of CdS nanoparticles in polystyrene microfibers. Materials Letters , 2007, 61(11-12): 2288–2291
doi: 10.1016/j.matlet.2006.08.070
16 Mammeri F, Bourhis E L, Rozes L, Sanchez C. Mechanical properties of hybrid organic-inorganic materials. Journal of Materials Chemistry , 2005, 15(35-36): 3787–3811
doi: 10.1039/b507309j
17 Gao Z, Xie W, Hwu J M, Wells L, Pan W P. The characterization of organically modified montmorillonite and its filled PMMA nanocomposite. Journal of Thermal Analysis and Calorimetry , 2001, 64(2): 467–475
doi: 10.1023/A:1011514110413
18 Whittington A P, Nguyen S T, Kim J H. Thermal behavior of polystyrene-silica nanocomposites. Nanoscape , 2009, 6(1): 26–29
19 Zhao Q, Samulski E T. A comparative study of poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared in supercritical carbon dioxide. Polymer , 2006, 47(2): 663–671
doi: 10.1016/j.polymer.2005.11.079
20 Chung H J, Taubert A, Deshmukh R D, Composto R J. Mobile nanoparticles and their effect on phase separation dynamics in thin-film polymer blends. Europhysics Letters , 2004, 68(2): 219–225
doi: 10.1209/epl/i2004-10242-2
21 Ginzburg V V, Qiu F, Paniconi M, Peng G W, Jasnow D, Balazs A C. Simulation of hard particles in a phase-separating binary mixture. Physical Review Letters , 1999, 82(20): 4026–4029
doi: 10.1103/PhysRevLett.82.4026
22 Tang Y L, Ma Y Q. Controlling structural organization of binary phase-separating fluids through mobile particles. Journal of Chemical Physics , 2002, 116(17): 7719–7723
doi: 10.1063/1.1467344
23 Baschnagel J, Binder K. On the influence of hard walls on structural properties in polymer glass simulation. Macromolecules , 1995, 28(20): 6808–6818
doi: 10.1021/ma00124a016
24 Kraus J, Müller-Buschbaum P, Kuhlmann T, Schubert D W, Stamm M. Confinement effects on the chain conformation in thin polymer films. Europhysics Letters , 2000, 49(2): 210–216
doi: 10.1209/epl/i2000-00135-4
[1] QI Dongming, SHAO Jianzhong, WU Minghua, NITTA Kohhei. Phenolic rigid organic filler/isotactic polypropylene composites. II. Tensile properties [J]. Front. Chem. Sci. Eng., 2008, 2(4): 396-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed