Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (3) : 385-391    https://doi.org/10.1007/s11705-011-1101-4
RESEARCH ARTICLE
Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder
Swati Mukhopadhyay()
Department of Mathematics, the University of Burdwan, Burdwan-713104, India
 Download: PDF(188 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents the distribution of a solute undergoing a first order chemical reaction in an axisymmetric laminar boundary layer flow along a stretching cylinder. Velocity slip condition at the boundary is used instead of no-slip condition. Similarity transformations are used to convert the partial differential equations corresponding to momentum and concentration into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. The velocity decreases with increasing slip parameter. The skin friction as well as the mass transfer rate at the surface is larger for a cylinder than for a flat plate.

Keywords boundary layer      stretching cylinder      partial slip      mass transfer      similarity solution     
Corresponding Author(s): Mukhopadhyay Swati,Email:swati_bumath@yahoo.co.in   
Issue Date: 05 September 2011
 Cite this article:   
Swati Mukhopadhyay. Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder[J]. Front Chem Sci Eng, 2011, 5(3): 385-391.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1101-4
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I3/385
Fig.1  Variation of velocity for several values of the curvature parameter (a) in the absence of slip (Ishak and Nazar []); (b) in the presence of slip
Fig.2  Concentration profiles for several values of the curvature parameter for a stretching cylinder (a) in the absence of slip; (b) in the presence of slip
Fig.3  (a) Variation of velocity for several values of the slip parameter for a flat plate with = 0; (b) Variation of shear stress for several values of the slip parameter for a flat plate; (c) Variation of velocity for several values of the slip parameter for a stretching cylinder
Fig.4  Concentration profiles for several values of the slip parameter for a flat plate
Fig.5  (a) Concentration profiles for several values of the power law exponent for a flat plate; (b) Variation of the concentration gradient for several values of the power law exponent for a flat plate; (c) Concentration profiles for several values of the power law exponent for a stretching cylinder; (d) Variation of the concentration gradient for several values of the power law exponent for a stretching cylinder
Fig.6  Concentration profiles for several values of the Schmidt number Sc for (a) a flat plate; (b) a stretching cylinder
Fig.7  Concentration profiles for several values of the reaction rate parameter for a flat plate
1 Chambré P L, Young J D. On diffusion of a chemically reactive species in a laminar boundary layer flow. Physics of Fluids , 1958, 1(1): 48–54
2 Andersson H I, Hansen O R, Holmedal B. Diffusion of a chemically reactive species from a stretching sheet. International Journal of Heat and Mass Transfer , 1994, 37(4): 659–664
doi: 10.1016/0017-9310(94)90137-6
3 Takhar H S, Chamkha A J, Nath G. Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species. International Journal of Engineering Science , 2000, 38(12): 1303–1314
doi: 10.1016/S0020-7225(99)00079-8
4 Afify A A. MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. Heat and Mass Transfer , 2004, 40(6-7): 495–500
doi: 10.1007/s00231-003-0486-0
5 Liu I C. A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet. International Communications in Heat and Mass Transfer , 2005, 32(8): 1075–1084
doi: 10.1016/j.icheatmasstransfer.2005.02.003
6 Akyildiz F T, Bellout H, Vajravelu K. Diffusion of chemically reactive species in a porous medium over a stretching sheet. Journal of Mathematical Analysis and Applications , 2006, 320(1): 322–339
doi: 10.1016/j.jmaa.2005.06.095
7 Cortell R. MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chemical Engineering and Processing , 2007, 46(8): 721–728
doi: 10.1016/j.cep.2006.09.008
8 Kandasamy R, Ismoen M, Saim H B. Lie group analysis for the effects of temperature-dependent fluid viscosity and chemical reaction on MHD free convective heat and mass transfer with variable stream conditions. Nuclear Engineering and Design , 2010, 240(1): 39–46
doi: 10.1016/j.nucengdes.2009.08.012
9 Lin H T, Shih Y P. Laminar boundary layer heat transfer along static and moving cylinders. European Journal of Scientific Research , 1980, 3(1): 73–79
10 Lin H T, Shi Y P. Buoyancy effects on the laminar boundary layer heat transfer along vertically moving cylinders. European Journal of Scientific Research , 1981, 4(1): 47–51
11 Ishak A, Nazar R. Laminar boundary layer flow along a stretching cylinder. European Journal of Scientific Research , 2009, 36(1): 22–29
12 Grubka L G, Bobba K M. Heat transfer characteristics of a continuous stretching surface with variable temperature. Journal of Heat Transfer , 1985, 107(1): 248–250
doi: 10.1115/1.3247387
13 Ali M E. Heat transfer characteristics of a continuous stretching surface. Heat and Mass Transfer , 1994, 29(4): 227–234
14 Yoshimura A, Prudhomme R K. Wall slip corrections for Couette and parallel disc viscometers. Journal of Rheology (New York, N.Y.) , 1988, 32(1): 53–67
doi: 10.1122/1.549963
15 Wang C Y. Flow due to a stretching boundary with partial slip—an exact solution of the Navier-Stokes equations. Chemical Engineering Science , 2002, 57(17): 3745–3747
doi: 10.1016/S0009-2509(02)00267-1
16 Andersson H I. Slip flow past a stretching surface. Acta Mechanica , 2002, 158(1-2): 121–125
doi: 10.1007/BF01463174
17 Ariel P D, Hayat T, Asghar S. The flow of an elastico-viscous fluid past a stretching sheet with partial slip. Acta Mechanica , 2006, 187(1-4): 29–35
doi: 10.1007/s00707-006-0370-3
18 Ariel P D. Two dimensional stagnation point flow of an elastico-viscous fluid with partial slip. Zeitschrift für Angewandte Mathematik und Mechanik , 2008, 88(4): 320–324
doi: 10.1002/zamm.200700041
19 Abbas Z, Wang Y, Hayat T, Oberlack M. Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching surface. International Journal for Numerical Methods in Fluids , 2009, 59(4): 443–458
doi: 10.1002/fld.1825
20 Crane L J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik , 1970, 21(4): 645–647
doi: 10.1007/BF01587695
[1] Hao Xu, Chi Lei, Qinming Wu, Qiuyan Zhu, Xiangju Meng, Daniel Dai, Stefan Maurer, Andrei-Nicolae Parvulescu, Ulrich Müller, Fengshou Xiao. Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction[J]. Front. Chem. Sci. Eng., 2020, 14(2): 267-274.
[2] Ni Wan,Mary Abernathy,Joseph Kuo-Hsiang Tang,Yinjie J. Tang,Le You. Cyanobacterial photo-driven mixotrophic metabolism and its advantages for biosynthesis[J]. Front. Chem. Sci. Eng., 2015, 9(3): 308-316.
[3] Shuyong CHEN, Xigang YUAN, Bo FU, Kuotsung YU. Simulation of interfacial Marangoni convection in gas-liquid mass transfer by lattice Boltzmann method[J]. Front Chem Sci Eng, 2011, 5(4): 448-454.
[4] Krishnendu BHATTACHARYYA, G. C. LAYEK. Magnetohydrodynamic slip flow and diffusion of a reactive solute past a permeable flat plate with suction/injection[J]. Front Chem Sci Eng, 2011, 5(4): 471-476.
[5] Krishnendu Bhattacharyya. Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection[J]. Front Chem Sci Eng, 2011, 5(3): 376-384.
[6] Hui HU, Zhiming CHEN, Zhen JIAO. Characterization of micro-mixing in a novel impinging streams reactor[J]. Front Chem Eng Chin, 2009, 3(1): 58-64.
[7] ZHAO Chaofan, ZHU Chunying, MA Youguang. Studies on the liquid-liquid interfacial mass transfer process using holographic interferometry[J]. Front. Chem. Sci. Eng., 2008, 2(1): 1-4.
[8] GAO Jian, REN Zhongqi, ZHANG Zeting, ZHANG Weidong. Experimental studies on the influence of porosity on membrane absorption process[J]. Front. Chem. Sci. Eng., 2007, 1(4): 385-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed