Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (4) : 463-470    https://doi.org/10.1007/s11705-011-1112-1
RESEARCH ARTICLE
Application of statistical design for the production of inulinase by streptomyces sp. using pressmud
M. DILIPKUMAR1(), M. RAJASIMMAN1, N. RAJAMOHAN2
1. Department of Chemical Engineering, Annamalai University, Annamalainagar-608002, Tamilnadu, India; 2. Department of Chemical Engineering, Sohar University, Sohar, Sultanate of Oman
 Download: PDF(323 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A Plackett-Burman design was employed for screening 18 nutrient components for the production of inulinase using streptomyces sp. and pressmud as the substrate via solid-state fermentation (SSF). From the experiments, three nutrients viz. yeast extract, FeSO4·7H2O, and NH4NO3 were found to be the most significant components. Hence these three components were selected and optimized using Response Surface Methodology (RSM). The optimum conditions are: yeast extract 0.00274 g/gds, FeSO4·7H2O 0.00011 g/gds and NH4NO3 0.00772 g/gds. The effect of the substrate concentration and initial moisture content were also studied. A substrate concentration of 12 g and an initial moisture content of 65% are optimum for the maximum production of inulinase (89 U/gds).

Keywords inulinase      pressmud      Response Surface Methodology (RSM)      streptomyces sp     
Corresponding Author(s): DILIPKUMAR M.,Email:mdilip_kumar@yahoo.co.in   
Issue Date: 05 December 2011
 Cite this article:   
M. DILIPKUMAR,M. RAJASIMMAN,N. RAJAMOHAN. Application of statistical design for the production of inulinase by streptomyces sp. using pressmud[J]. Front Chem Sci Eng, 2011, 5(4): 463-470.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1112-1
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I4/463
NutrientsComposition
Organic carbon20%-25%
Nitrogen0.90%-1.25%
Phosphorus2.50%-3.00%
Potassium1.00%-1.50%
Calcium11.00%
Magnesium1.65%
Sulfur0.23%
Copper52 ppm
Zinc69 ppm
Manganese898 ppm
Iron2000 ppm
Moisture70%
Tab.1  Composition of Pressmud
VariableLevels/g·((10 gds)-1)
Nutrient codeNutrientLow ( - 1)High ( + 1)
AYeast extract0.010.05
BBeef extract0.050.15
CMnSO4·7H2O0.10.5
DK2HPO40.020.07
ESoya bean cake0.40.8
FMgSO4·7H2O0.0020.012
GNH4Cl0.010.03
HKCl0.0050.015
J(NH4)2HPO40.050.3
KNH4NO30.050.1
LZnSO4·7H2O0.10.5
M(NH4)2SO40.060.1
NCorn steep liquor0.40.8
OPeptone0.050.15
PDextrose0.10.3
QFeSO4·7H2O0.00050.002
RKH2PO40.10.6
SUrea0.10.3
Tab.2  Nutrient screening using a Plackett-Burman design
Run No.ABCDEFGHJKLMNOPQRSInulinase activity /(U·gds-1)
11- 11- 11111- 1- 111- 111- 1- 1- 156.74
21- 11111- 1- 111- 111- 1- 1- 1- 1161.51
3- 1- 1- 1- 11- 11- 11111- 1- 111- 1151.12
4- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 140.53
5- 1- 1- 11- 11- 11111- 1- 111- 11131.44
611- 111- 1- 1- 1- 11- 11- 11111- 165.31
7- 1- 111- 111- 1- 1- 1- 11- 11- 111151.42
8- 11- 11111- 1- 111- 111- 1- 1- 1- 130.51
91- 1- 1- 1- 11- 11- 11111- 1- 111- 151.41
10- 11- 11- 11111- 1- 111- 111- 1- 162.30
111- 111- 1- 1- 1- 11- 11- 11111- 1- 171.81
12- 11111- 1- 111- 111- 1- 1- 1- 11- 131.30
13111- 1- 111- 111- 1- 1- 1- 11- 11- 162.61
1411- 1- 111- 111- 1- 1- 1- 11- 11- 1172.71
151- 1- 111- 111- 1- 1- 1- 11- 11- 11151.10
161111- 1- 111- 111- 1- 1- 1- 11- 1141.66
17- 1- 11- 11- 11111- 1- 111- 111- 121.14
1811- 1- 1- 1- 11- 11- 11111- 1- 11150.19
19- 111- 1- 1- 1- 11- 11- 11111- 1- 1120.78
20- 111- 111- 1- 1- 1- 11- 11- 1111173.43
Tab.3  Plackett-Burman experimental design matrix for screening of important variables for inulinase production
VariableCodeLevels /(g·(10 gds) -1)
- 1.68- 10+ 1+ 1.68
Yeast extractX10.010.020.030.040.05
FESO4·7H2OX20.00050.00080.00120.00160.002
NH4NO3X30.050.0620.0750.0870.1
Tab.4  Ranges of the independent variables used in RSM
Run No.X1X2X3Inulinase activity /(U·gds-1)
ExperimentalPredicted
101.6803333.84
21115149.09
31- 1- 15246.02
40007881.05
500- 1.684449.67
60008181.05
70007881.05
80008581.05
90008281.05
10- 1- 1- 16265.16
111- 115558.78
120008281.05
130- 1.6806259.40
1411- 13632.82
15- 1114148.23
16001.687163.57
17- 11- 14744.46
181.68004347.93
19- 1.68007063.30
20- 1- 116165.42
Tab.5  Central composite design (CCD) of factors in coded levels with enzyme activity as response
Fig.1  Pareto chart showing the effect of media components on inulinase activity
SourceCoefficient factorSum of squaresDFFP>F
Model81.05045100.12916.10<0.0001
X1-4.56975285.1918.100.0174
X2-7.59853788.51122.400.0008
X34.13041232.9916.620.0278
X1 × X21.8750028.1310.800.3924
X1 × X33.1250078.1312.220.1672
X2 × X30.875006.1310.170.6854
X1 × X1-8.991341165.07133.090.0002
X2 × X2-12.17332135.60160.66<0.0001
X3 × X3-8.637791075.24130.540.0003
Residual352.08108.780.0162
Lack of fit316.085
Pure error36.005
Cor total5452.2019
Tab.6  Analysis of Variance (ANOVA) for a response surface quadratic model for the production of inulinase
Fig.2  Predicted response versus actual response
Fig.3  3D plot showing the effect of yeast extract and FeSO·7HO on inulinase activity
Fig.4  3D plot showing the effect of yeast extract and NHNO on inulinase activity
Fig.5  3D plot showing the effect of FeSO·7HO and NHNO on inulinase activity
Fig.6  Effect of substrate concentration on inulinase production
Fig.7  Effect of initial moisture content on inulinase production
SubstrateMicroorganismActivity /(U·gds-1)Ref.
Wheat bran and rice huskCryptococcus aureus436.2[28]
Dry bagasseKluyveromyces marxianus19.4[29]
Wheat branStaphylococcus sp.107.64[30]
Kluyveromyces marxianus122.88
Sugarcane bagasseKluyveromyces marxianus250[31]
Wheat bran and Rice branPichia guilliermondii,291.0[32]
Pichia guilliermondii M-30455.9
PressmudStreptomyces sp.89This work
Tab.7  Ranges of the independent variables used in RSM
1 Yuan X L, Goosen C, Kools H, van der Maarel M J E C, van den Hondel C A M J J, Dijkhuizen L, Ram A F J. Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology , 2006, 152(10): 3061-3073
doi: 10.1099/mic.0.29051-0
2 Mazutti M, Ceni G, Di Luccio M, Treichel H. Production of inulinase by solid-state fermentation: effect of process parameters on production and preliminary characterization of enzyme preparations. Bioprocess and Biosystems Engineering , 2007, 30(5): 297-304
doi: 10.1007/s00449-006-0096-6
3 Pessoni R A, Braga M R, Figueiredo-Ribeiro R C. Purification and properties of exo-inulinases from Penicillium janczewskii growing on distinct carbon sources. Mycologia , 2007, 99(4): 493-503
doi: 10.3852/mycologia.99.4.493
4 Singh R S, Sooch B S, Puri M. Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Bioresource Technology , 2007, 98(13): 2518-2525
doi: 10.1016/j.biortech.2006.09.011
5 Yuan X L, Roubos J A, van den Hondel C A M J J, Ram A F J. Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Molecular Genetics and Genomics , 2008, 279(1): 11-26
doi: 10.1007/s00438-007-0290-5
6 Gern R M, Furlan S A, Ninow J L, Jonas R. Screening for microorganisms that produce only endo-inulinase. Applied Microbiology and Biotechnology , 2001, 55(5): 632-635
doi: 10.1007/s002530000578
7 Kaur N, Gupta A K. Applications of inulin and oligofructose in health and nutrition. Journal of Biosciences , 2002, 27(7): 703-714
doi: 10.1007/BF02708379
8 Mazutti M, Bender J P, Treichel H, Luccio M D. Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate. Enzyme and Microbial Technology , 2006, 39(1): 56-59
doi: 10.1016/j.enzmictec.2005.09.008
10 Cazetta M L, Martins P M M, Monti R, Contiero J. Yacon (polymnia sanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var. bulgaricus. Journal of Food Engineering , 2005, 66(3): 301-305
doi: 10.1016/j.jfoodeng.2004.03.022
11 Pinheiro A D, Rocha M V, Macedo G R, Gon?alves L R. Evaluation of cashew apple juice for the production of fuel ethanol. Applied Biochemistry and Biotechnology , 2008, 148(1-3): 227-234
doi: 10.1007/s12010-007-8118-7
12 Gill P K, Manhas R K, Singh P. Hydrolysis of inulin by immobilized thermostable extracellular exoinulinase from Aspergillus fumigatus. Journal of Food Engineering , 2006, 76(3): 369-375
doi: 10.1016/j.jfoodeng.2005.05.052
13 Gao L M, Chi Z M, Sheng J, Wang L, Li J, Gong F. Inulinase-producing marine yeasts: evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microbial Ecology , 2007, 54(4): 722-729
doi: 10.1007/s00248-007-9231-4
14 Gong F, Sheng J, Chi Z M, Li J. Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. Journal of Industrial Microbiology & Biotechnology , 2007, 34(3): 179-185
doi: 10.1007/s10295-006-0184-2
15 Pandey A. Solid state fermentation. Biochemical Engineering Journal , 2003, 13(2-3): 81-84
doi: 10.1016/S1369-703X(02)00121-3
16 Couto S R, Sanroman M A. Application of solid-state fermentation to food industry—a review. Journal of Food Engineering , 2006, 76(3): 291-302
doi: 10.1016/j.jfoodeng.2005.05.022
17 Dilipkumar M, Rajasimman M, Rajamohan N. Optimization of inulinase production using copra waste by Kluyveromyces marxianus var. marxianus. Chemical Industry & Chemical Engineering Quarterly , 2010, 16(4): 319-327
doi: 10.2298/CICEQ091211032D
18 Rajasimman M, Murugaiyan K. Optimization of process variables for the biosorption of chromium using Hypnea valentiae. Nova Biotechnologica , 2010, 10: 107-115
19 Rajasimman M, Sangeetha R, Karthic P. Statistical optimization of process parameters for the extraction of chromium (VI) from pharmaceutical wastewater by emulsion liquid membrane. Chemical Engineering Journal , 2009, 150(2-3): 275-279
doi: 10.1016/j.cej.2008.12.026
20 Rajeshkannan R, Rajasimman M, Rajamohan N. Sorption of Acid Blue 9 using hydrilla verticillata biomass—optimization, equilibrium, and kinetic studies. Bioremediation Journal , 2011, 15(1): 57-67
doi: 10.1080/10889868.2010.548002
21 Rajeshkannan R, Rajasimman M, Rajamohan N. Optimization, equilibrium and kinetics studies on sorption of Acid Blue 9 using brown marine algae turbinaria conoides. Biodegradation , 2010, 21(5): 713-727
doi: 10.1007/s10532-010-9337-0
22 Manivannan P, Rajasimman M. Optimization of osmotic dehydration of radish in sugar solution. Food Science and Technology Research , 2009, 15(6): 575-586
doi: 10.3136/fstr.15.575
23 Chang C Y, Lee C L, Pan T M. Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures. Applied Microbiology and Biotechnology , 2006, 72(4): 654-661
doi: 10.1007/s00253-006-0325-6
24 Mannan S, Fakhru?-Razi A, Alam M Z. Optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum, using response surface methodology. Journal of Environmental Sciences , 2007, 19(1): 23-28
doi: 10.1016/S1001-0742(07)60004-7
25 Pan C M, Fan Y T, Xing Y, Hou H W, Zhang M L. Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Bioresource Technology , 2008, 99(8): 3146-3154
doi: 10.1016/j.biortech.2007.05.055
26 Miller G L. Use of dinitrosalisylic acid reagent for determination of reducing sugar. Analytical Chemistry , 1959, 31(3): 426-428
doi: 10.1021/ac60147a030
27 Uzunova K, Vassileva A, Ivanova V, Spasova D, Tonkova A. Thermostable exo-inulinase production by semicontinuous cultivation of membrane-immobilized Bacillus sp. 11 cells. Process Biochemistry , 2002, 37(8): 863-868
doi: 10.1016/S0032-9592(01)00283-7
28 Sheng J, Chi Z, Yan K, Wang X, Gong F, Li J. Use of response surface methodology for optimizing process parameters for high inulinase production by the marine yeast Cryptococcus aureus G7a in solid-state fermentation and hydrolysis of inulin. Bioprocess and Biosystems Engineering , 2009, 32(3): 333-339
doi: 10.1007/s00449-008-0252-2
29 Mazutti M A, Skrowonski A, Boni G, Zabot G L, Silva M F, de Oliveira D, Luccio M D, Filho F M, Rodrigues M I, Treichel H. Partial characterization of inulinases obtained by submerged and solid-state fermentation using agroindustrial residues as substrates: a comparative study. Applied Biochemistry and Biotechnology , 2010, 160(3): 682-693
doi: 10.1007/s12010-009-8687-8
30 Selvakumar P, Pandey A. Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Process Biochemistry , 1999, 34(8): 851-855
doi: 10.1016/S0032-9592(99)00008-4
32 Guo N, Gong F, Chi Z, Sheng J, Li J. Enhanced inulinase production in solid state fermentation by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. Journal of Industrial Microbiology & Biotechnology , 2009, 36(4): 499-507
doi: 10.1007/s10295-008-0519-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed