Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (4) : 409-415    https://doi.org/10.1007/s11705-011-1141-9
RESEARCH ARTICLE
Synthesis of depsipeptides from L-amino acids and lactones
Hongfei CAO1, Yakai FENG1,2(), Heyun WANG1, Li ZHANG1, Musammir KHAN1, Jintang GUO1,2
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China; Teltow 14513, Germany
 Download: PDF(178 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By using the corresponding L-amino acid sodium as initiator, ?-caprolactone-depsipeptides CL-Ala and CL-Leu were prepared by the reactions of ?-caprolactone (CL) with L-alanine and L-leucine, respectively, and p-dioxanone-depsipeptide (PDO-Leu) was prepared by the reaction of p-dioxanone (PDO) with L-leucine. Two poly(?-caprolactone) oligomers (PCL-Ala and PCL-Leu) of different molecular weights with depsipeptide unit were synthesized by controlling the feed ratio of L-amino acid sodium and CL. The presence of the depsipeptide structure in these obtained products was confirmed by 1H NMR spectra and the molecular weight of the poly(?-caprolactone) oligomers was measured by gel permeation chromatography (GPC). These products contain a hydroxyl group and a carboxyl group in one molecule, which means they could act as bifunctional monomers for further polymerization to prepare high molecular weight polymers. By this way, the depsipeptide unit could be introduced into the polymers and the biodegradation rates of the novel polymers could be well controlled in vivo by the tailored molecular structures.

Keywords ?-caprolactone      p-dioxanone      L-alanine      L-leucine      depsipeptide     
Corresponding Author(s): FENG Yakai,Email:yakaifeng@tju.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Hongfei CAO,Yakai FENG,Heyun WANG, et al. Synthesis of depsipeptides from L-amino acids and lactones[J]. Front Chem Sci Eng, 2011, 5(4): 409-415.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1141-9
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I4/409
Fig.1  Synthetic routes for the depsipeptides from lactones
Fig.2  H NMR spectrum of CL-Ala (a) and CL-Leu (b) in CDCl at 25°C
Fig.3  H NMR spectrum of PDO-Leu in DMSO- at 25°C
Sample IDCL: amino acid sodium (mol: mol)Temperature /°CReaction time /hMn
PCL-Ala12014072172
PCL-Ala24014074421
PCL-Ala38514079779
PCL-Leu12014072195
PCL-Leu24014074197
PCL-Leu38514079592
Tab.1  The molecular weight of the PCL-Ala and PCL-Leu
Fig.4  H NMR spectrum of PCL-Ala in CDCl at 25°C ( = 2172)
1 Okada M. Chemical syntheses of biodegradable polymers. Progress in Polymer Science , 2002, 27(1): 87–133
2 Kim S Y, Shin I G, Lee Y M. Preparation and characterization of biodegradable nanospheres composed of methoxy poly(ethylene glycol) and DL-lactide block copolymer as novel drug carriers. Journal of Controlled Release , 1998, 56(1–3): 197–208
3 Lowe P, Lowe N J, Patnaik R. Three-dimensional digital surface imaging measurement of the volumizing effect of injectable poly-L-lactic acid for nasolabial folds. Journal of Cosmetic and Laser Therapy , 2011, 13(2): 87–94
4 Wischke C, Schwendeman S P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics , 2008, 364(2): 298–327
5 Zhu C H, Jung S, Luo S B, Meng F H, Zhu X L, Park T G, Zhong Z Y. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials , 2010, 31(8): 2408–2416
6 Ueki K, Onishi H, Sasatsu M, Machida Y. Preparation of carboxy-PEG-PLA nanoparticles loaded with camptothecin and their body distribution in solid tumor-bearing mice. Drug Development Research , 2009, 70(7): 512–519
7 Xiao L, Xiong X Q, Sun X H, Zhu Y H, Yang H, Chen H B, Gan L, Xu H, Yang X. Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles. Biomaterials , 2011, 32(22): 5148–5157
8 Wang B, Jiang W, Yan H, Zhang X, Yang L, Deng L, Singh G K, Pan J. Novel PEG-graft-PLA nanoparticles with the potential for encapsulation and controlled release of hydrophobic and hydrophilic medications in aqueous medium. Int J Nanomedicine , 2011, 6: 1443–1451
9 Luciani A, Coccoli V, Orsi S, Ambrosio L, Netti P A. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials , 2008, 29(36): 4800–4807
10 Endres T K, Beck-Broichsitter M, Samsonova O, Renette T, Kissel T H. Self-assembled biodegradable amphiphilic PEG-PCL-lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials , 2011, 32(30): 7721–7731
11 Zhu J, Wang W T, Wang X L, Li B, Wang Y Z. Green synthesis of a novel biodegradable copolymer base on cellulose and poly(p-dioxanone) in ionic liquid. Carbohydrate Polymers , 2009, 76(1): 139–144
12 Behl M, Ridder U, Feng Y, Kelch S, Lendlein A. Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter , 2009, 5(3): 676–684
13 Zhang Y, Wu X H, Han Y, Mo F, Duan Y R, Li S. Novel thymopentin release systems prepared from bioresorbable PLA-PEG-PLA hydrogels. International Journal of Pharmaceutics , 2010, 386(1–2): 15–22
14 Li L, Li H, Qian Y, Li X, Singh G K, Zhong L, Liu W, Lv Y, Cai K, Yang L. Electrospun poly (?-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. International Journal of Biological Macromolecules , 2011, 49(2): 223–232
15 Liu G Y, Zhai Y L, Wang X L, Wang W T, Pan Y B, Dong X T, Wang Y Z. Preparation, Characterization, and in vitro drug release behavior of biodegradable chitosan-graft-poly(1,4-dioxan-2-one) copolymer. Carbohydrate Polymers , 2008, 74(4): 862–867
16 Redin T, Finne-Wistrand A, Mathisen T, Albertsson A C. Bulk Polymerization of p-dioxanone using a cyclic tin alkoxide as initiator. Journal of Polymer Science Part A: Polymer Chemistry , 2007, 45(23): 5552–5558
17 Wu Q, Wang C, Zhang D, Song X, Verpoort F, Zhang G. Synthesis and micellization of amphiphilic biodegradable methoxypolyethylene glycol/poly(D,L-lactide)/polyphosphate block copolymer. Reactive and Functional Polymers , 2011, 71(9): 980–984
18 Kulkarni A, Reiche J, Hartmann J, Kratz K, Lendlein A. Selective enzymatic degradation of poly(?-caprolactone) containing multiblock copolymers. European Journal of Pharmaceutics and Biopharmaceutics , 2008, 68(1): 46–56
19 Lee B H, Song S C. Synthesis and characterization of biodegradable thermosensitive poly(organophosphazene) gels. Macromolecules , 2004, 37(12): 4533–4537
20 Fan Y, Chen G, Tananka J, Tateishi T. Biosynthesis of polyamides containing amino acid residues through the specific aminolysis of amino acid ester derivatives. Materials Science and Engineering, C , 2004, 24(6–8): 791–796
21 Katsarava R, Beridze V, Arabuli N, Kharadze D, Chu C C, Won C Y. Amino acid-based bioanalogous polymers. Synthesis, and study of regular poly(ester amide)s based on bis(?-amino acid), ?-alkylene diesters and aliphatic dicarboxylic acids. Journal of Polymer Science Part A: Polymer Chemistry , 1999, 37(4): 391–407
22 Tanaka T, Yaguchi T, Hiruta O, Futamura T, Uotani K, Satoh A, Taniguchi M, Oi S. Screening for microorganisms having poly(γ-glutamic acid) endohydrolase activity and the enzyme production by myrothecium sp. TM-4222. Bioscience, Biotechnology, and Biochemistry , 1993, 57(10): 1809–1810
23 Feng Y K, Lu J, Behl M, Lendlein A. Progress in depsipeptide-based biomaterials. Macromolecular Bioscience , 2010, 10(9): 1008–1021
24 Nagahama K, Imai Y, Nakayama T, Ohmura J, Ouchi T, Ohya Y. Thermo-sensitive sol-gel transition of poly(depsipeptide-co-lactide)-g-PEG copolymers in aqueous solution. Polymer , 2009, 50(15): 3547–3555
25 Ohya Y, Yamamoto H, Nagahama K, Ouchi T. Effect of polydepsipeptide side-chain groups on the temperature sensitivity of triblock copolymers composed of polydepsipeptides and poly(ethylene glycol). Journal of Polymer Science Part A: Polymer Chemistry , 2009, 47(15): 3892–3903
26 Feng Y, Klee D, H?cker H. Lipase-catalyzed ring-opening polymerization of 6(s)-methyl-morpholine-2,5-dione. Journal of Polymer Science Part A: Polymer Chemistry , 2005, 43(14): 3030–3039
27 Feng Y K, Guo J T. Biodegradable polydepsipeptides. International Journal of Molecular Sciences , 2009, 10(2): 589–615
28 Feng Y, Knüfermann J, Klee D, H?cker H. Enzyme-catalyzed ring-opening polymerization of 3(s)-isopropylmorpholine-2,5-dione. Macromolecular Rapid Communications , 1999, 20(2): 88–90
29 Ohya Y, Matsunami H, Yamabe E, Ouchi T. Cell attachment and growth on films prepared from poly(depsipeptide-co-lactide) having various functional groups. Journal of Biomedical Material Research, A , 2003, 65 A(1): 79–88
30 Ouchi T, Nozaki T, Ishikawa A, Fujimoto I, Ohya Y. Synthesis and enzymatic hydrolysis of lactic acid-depsipeptide copolymers with functionalized pendant groups. Journal of Polymer Science Part A: Polymer Chemistry , 1997, 35(2): 377–383
31 Ohya Y, Nakai T, Nagahama K, Ouchi T, Tanaka S, Kato K. The synthesis and biodegradability of poly(lactide-random-depsipeptide)-PEG-poly(lactide-random-depsipeptide) ABA-type triblock copolymers. Journal of Bioactive and Compatible Polymers , 2006, 21(6): 557–577
32 Abayasinghe N K, Perera K P U, Thomas C, Daly A, Suresh S, Burg K, Harrison G M, Smith D W Jr. Amido-modified polylactide for potential tissue engineering applications. Journal of Biomaterials Science. Polymer Edition , 2004, 15(5): 595–606
33 Li Y, He J, Cui G, He W, Peng Z. Synthesis of polymorpholine-2,5-dione-block-polylactide by two-step anionic ring-opening polymerization. Journal of Applied Polymer Science , 2010, 118(4): 2005–2008
34 Xie Z, Guan H, Chen X, Lu C, Chen L, Hu X, Shi Q, Jing X. A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer. Journal of Controlled Release , 2007, 117(2): 210– 216
35 Kricheldorf H R, Hauser K. Polylactones. 55. A-B-A triblock copolymers of various polypeptides. Syntheses involving 4-aminobenzoyl-terminated poly(?-caprolactone) as B block. Biomacromolecules , 2001, 2(4): 1110–1115
36 Jeong J H, Kang H S, Yang S R, Kim J D. Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone). Polymer , 2003, 44(3): 583–591
37 Rong G, Deng M, Deng C, Tang Z, Piao L, Chen X, Jing X. Synthesis of poly(?-caprolactone)-b-poly(gamma-benzyl-L-glutamic acid) block copolymer using amino organic calcium catalyst. Biomacromolecules , 2003, 4(6): 1800–1804
38 Wang D, Feng X D. Synthesis of poly(glycolic acid-alt-L-aspartic acid) from a morpholine-2,5-dione derivative. Macromolecules , 1997, 30(19): 5688–5692
39 Battig A, Hiebl B, Feng Y K, Lendlein A, Behl M. Biological evaluation of degradable, stimuli-sensitive multiblock copolymers having polydepsipeptide and poly(?-caprolactone) segments in vitro. Clinical Hemorheology and Micro circulation, 2011, 48(1–3): 161–172
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed