Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (4) : 436-442    https://doi.org/10.1007/s11705-012-1222-4
RESEARCH ARTICLE
LC/MS/MS and radioisotope method combined for recognizing the affinity between catalpol and OCT2 transporter
Zhiyu ZHANG1,2, Changxiao LIU1,2, Duanyun SI2, Rong LU2, Xiulin YI2()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
 Download: PDF(244 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

More and more herbal medicines are found to be the substrates of drug transporters. In this paper, chromatography/tandem mass spectrometry (LC/MS/MS) combined with radioisotope method was used for the quantification of catalpol, a traditional Chinese medicine, to study the affinity relationship between herbal medicines and transporters. Catalpol uptake experiment was carried out by using several transporters (OAT1, OCT2, OAT3, OATP1B1 and OATP2B1). And samples were precipitated with methanol and quantified with LC/MS/MS. The results show that catalpol has a good affinity with OCT2-transfected S2 cells. After studying drug-drug interaction between catalpol and 14C-tetraethylammonium (TEA), we found that catalpol is able to facilitate TEA transport mediated by OCT2, suggesting that catalpol could probably be a new promoter of OCT2.

Keywords catalpol      LC/MS/MS      OCT2     
Corresponding Author(s): YI Xiulin,Email:yixl@tjipr.com   
Issue Date: 05 December 2012
 Cite this article:   
Zhiyu ZHANG,Changxiao LIU,Duanyun SI, et al. LC/MS/MS and radioisotope method combined for recognizing the affinity between catalpol and OCT2 transporter[J]. Front Chem Sci Eng, 2012, 6(4): 436-442.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1222-4
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I4/436
Fig.1  Representative chromatogram of IS and catalpol
Fig.1  Representative chromatogram of IS and catalpol
Fig.1  Representative chromatogram of IS and catalpol
Fig.1  Representative chromatogram of IS and catalpol
Fig.1  Representative chromatogram of IS and catalpol
Fig.1  Representative chromatogram of IS and catalpol
Fig.2  (a) 5 μmol/L C-PAH, OAT1, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled PAH; (b) 60 μmol/L C-TEA, OCT2, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled TEA; (c) 50 nmol/L 3H-estrone sulfate, OAT3, uptake time: 2 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate; (d) 50 nmol/L 3H-estrone sulfate, OATP1B1, uptake time: 1 min, inhibitor: 30 μmol/L non-radiolabeled estrone sulfate; (e) 50 nmol/L 3H-estrone sulfate, OATP2B1, uptake time: 1 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate
Cell function confirmation
Fig.2  (a) 5 μmol/L C-PAH, OAT1, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled PAH; (b) 60 μmol/L C-TEA, OCT2, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled TEA; (c) 50 nmol/L 3H-estrone sulfate, OAT3, uptake time: 2 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate; (d) 50 nmol/L 3H-estrone sulfate, OATP1B1, uptake time: 1 min, inhibitor: 30 μmol/L non-radiolabeled estrone sulfate; (e) 50 nmol/L 3H-estrone sulfate, OATP2B1, uptake time: 1 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate
Cell function confirmation
Fig.2  (a) 5 μmol/L C-PAH, OAT1, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled PAH; (b) 60 μmol/L C-TEA, OCT2, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled TEA; (c) 50 nmol/L 3H-estrone sulfate, OAT3, uptake time: 2 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate; (d) 50 nmol/L 3H-estrone sulfate, OATP1B1, uptake time: 1 min, inhibitor: 30 μmol/L non-radiolabeled estrone sulfate; (e) 50 nmol/L 3H-estrone sulfate, OATP2B1, uptake time: 1 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate
Cell function confirmation
Fig.2  (a) 5 μmol/L C-PAH, OAT1, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled PAH; (b) 60 μmol/L C-TEA, OCT2, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled TEA; (c) 50 nmol/L 3H-estrone sulfate, OAT3, uptake time: 2 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate; (d) 50 nmol/L 3H-estrone sulfate, OATP1B1, uptake time: 1 min, inhibitor: 30 μmol/L non-radiolabeled estrone sulfate; (e) 50 nmol/L 3H-estrone sulfate, OATP2B1, uptake time: 1 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate
Cell function confirmation
Fig.2  (a) 5 μmol/L C-PAH, OAT1, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled PAH; (b) 60 μmol/L C-TEA, OCT2, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled TEA; (c) 50 nmol/L 3H-estrone sulfate, OAT3, uptake time: 2 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate; (d) 50 nmol/L 3H-estrone sulfate, OATP1B1, uptake time: 1 min, inhibitor: 30 μmol/L non-radiolabeled estrone sulfate; (e) 50 nmol/L 3H-estrone sulfate, OATP2B1, uptake time: 1 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate
Cell function confirmation
Fig.2  (a) 5 μmol/L C-PAH, OAT1, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled PAH; (b) 60 μmol/L C-TEA, OCT2, uptake time: 2 min, inhibitor: 1 mmol/L non-radiolabeled TEA; (c) 50 nmol/L 3H-estrone sulfate, OAT3, uptake time: 2 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate; (d) 50 nmol/L 3H-estrone sulfate, OATP1B1, uptake time: 1 min, inhibitor: 30 μmol/L non-radiolabeled estrone sulfate; (e) 50 nmol/L 3H-estrone sulfate, OATP2B1, uptake time: 1 min, inhibitor: 300 μmol/L non-radiolabeled estrone sulfate
Cell function confirmation
Fig.3  (a) OAT1; (b) OCT2; (c) OAT3; (d) OATP1B1; (e) OATP2B1
Catalpol uptake investigation
Fig.3  (a) OAT1; (b) OCT2; (c) OAT3; (d) OATP1B1; (e) OATP2B1
Catalpol uptake investigation
Fig.3  (a) OAT1; (b) OCT2; (c) OAT3; (d) OATP1B1; (e) OATP2B1
Catalpol uptake investigation
Fig.3  (a) OAT1; (b) OCT2; (c) OAT3; (d) OATP1B1; (e) OATP2B1
Catalpol uptake investigation
Fig.3  (a) OAT1; (b) OCT2; (c) OAT3; (d) OATP1B1; (e) OATP2B1
Catalpol uptake investigation
Fig.3  (a) OAT1; (b) OCT2; (c) OAT3; (d) OATP1B1; (e) OATP2B1
Catalpol uptake investigation
Fig.4  Drug-drug interaction Sixty μmol/L C-TEA mediated by OCT2 was used as positive control (middle); 30 μmol/L TEA, 100 μmol/L TEA, 300 μmol/L TEA, 30 μmol/L catalpol, 100 μmol/L catalpol and 300 μmol/L catalpol were added additionally for studying the variation of C-TEA uptake. Unpaired -test was done with GraphPad Prism 3.0 software. μM=μmol?L, * <0.05; ** <0.01; *** <0.001
Fig.4  Drug-drug interaction Sixty μmol/L C-TEA mediated by OCT2 was used as positive control (middle); 30 μmol/L TEA, 100 μmol/L TEA, 300 μmol/L TEA, 30 μmol/L catalpol, 100 μmol/L catalpol and 300 μmol/L catalpol were added additionally for studying the variation of C-TEA uptake. Unpaired -test was done with GraphPad Prism 3.0 software. μM=μmol?L, * <0.05; ** <0.01; *** <0.001
Fig.4  Drug-drug interaction Sixty μmol/L C-TEA mediated by OCT2 was used as positive control (middle); 30 μmol/L TEA, 100 μmol/L TEA, 300 μmol/L TEA, 30 μmol/L catalpol, 100 μmol/L catalpol and 300 μmol/L catalpol were added additionally for studying the variation of C-TEA uptake. Unpaired -test was done with GraphPad Prism 3.0 software. μM=μmol?L, * <0.05; ** <0.01; *** <0.001
Fig.4  Drug-drug interaction Sixty μmol/L C-TEA mediated by OCT2 was used as positive control (middle); 30 μmol/L TEA, 100 μmol/L TEA, 300 μmol/L TEA, 30 μmol/L catalpol, 100 μmol/L catalpol and 300 μmol/L catalpol were added additionally for studying the variation of C-TEA uptake. Unpaired -test was done with GraphPad Prism 3.0 software. μM=μmol?L, * <0.05; ** <0.01; *** <0.001
Fig.4  Drug-drug interaction Sixty μmol/L C-TEA mediated by OCT2 was used as positive control (middle); 30 μmol/L TEA, 100 μmol/L TEA, 300 μmol/L TEA, 30 μmol/L catalpol, 100 μmol/L catalpol and 300 μmol/L catalpol were added additionally for studying the variation of C-TEA uptake. Unpaired -test was done with GraphPad Prism 3.0 software. μM=μmol?L, * <0.05; ** <0.01; *** <0.001
Fig.4  Drug-drug interaction Sixty μmol/L C-TEA mediated by OCT2 was used as positive control (middle); 30 μmol/L TEA, 100 μmol/L TEA, 300 μmol/L TEA, 30 μmol/L catalpol, 100 μmol/L catalpol and 300 μmol/L catalpol were added additionally for studying the variation of C-TEA uptake. Unpaired -test was done with GraphPad Prism 3.0 software. μM=μmol?L, * <0.05; ** <0.01; *** <0.001
1 Giacomini K M, Huang S M, Tweedie D J, Benet L Z, Brouwer K L R, Chu X, Dahlin A, Evers R, Fischer V, Hillgren K M, Hoffmaster K A, Ishikawa T, Keppler D, Kim R B, Lee C A, Niemi M, Polli J W, Sugiyama Y, Swaan P W, Ware J A, Wright S H, Wah Yee S, Zamek-Gliszczynski M J, Zhang L. Membrane transporters in drug development. Nature Reviews. Drug Discovery , 2010, 9(3): 215–236
doi: 10.1038/nrd3028
2 Flynn C A, Alnouti Y, Reed G A. Quantification of the transporter substrate fexofenadine in cell lysates by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry , 2011, 25(16): 2361–2366
doi: 10.1002/rcm.5111
3 Huang W J, Niu H S, Lin M H, Cheng J T, Hsu F L. Antihyperglycemic effect of catalpol in streptozotocin-induced diabetic rats. Journal of Natural Products , 2010, 73(6): 1170–1172
doi: 10.1021/np9008317
4 Shieh J P, Cheng K C, Chung H H, Kerh Y F, Yeh C H, Cheng J T. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. Journal of Agricultural and Food Chemistry , 2011, 59(8): 3747–3753
doi: 10.1021/jf200069t
5 Wang Z, Liu Q, Zhang R, Liu S, Xia Z, Hu Y. Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors. Neuroscience , 2009, 163(4): 1363–1372
doi: 10.1016/j.neuroscience.2009.07.041
6 Lu R, Gu Y, Si D, Liu C. Quantitation of catalpol in rat plasma by liquid chromatography/electrospray ionization tandem mass spectrometry and its pharmacokinetic study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 2009, 877(29): 3589–3594
doi: 10.1016/j.jchromb.2009.08.047
7 Li X E, Yang S L, Yang J S. Comparison and correlative analysis on characters of Rehmannia glutinosa Libosch. Varieties. Acta Academiae Medicinae Sinicae , 2001, 23(6): 560–562 (in Chinese)
8 Tamura Y, Nishibe S. Changes in the concentrations of bioactive compounds in plantain leaves. Journal of Agricultural and Food Chemistry , 2002, 50(9): 2514–2518
doi: 10.1021/jf011490x
9 Wu H K, Chuang W C, Sheu S J. Separation of nine iridoids by capillary electrophoresis and high-performance liquid chromatography. Journal of Chromatography. A , 1998, 803(1): 179–187
doi: 10.1016/S0021-9673(97)01227-2
10 Suomi J, Sirén H, Wiedmer S K, Riekkola M L. Isolation of aucubin and catalpol from Melitaea cinxia larvae and quantification by micellar electrokinetic capillary chromatography. Analytica Chimica Acta , 2001, 429(1): 91–99
doi: 10.1016/S0003-2670(00)01266-6
11 Suomi J, Wiedmer S K, Jussila M, Riekkola M L. Determination of iridoid glycosides by micellar electrokinetic capillary chromatography-mass spectrometry with use of the partial filling technique. Electrophoresis , 2001, 22(12): 2580–2587
doi: 10.1002/1522-2683(200107)22:12&lt;2580::AID-ELPS2580&gt;3.0.CO;2-7
12 Suomi J, Wiedmer S K, Jussila M, Riekkola M L. Analysis of eleven iridoid glycosides by micellar electrokinetic capillary chromatography (MECC) and screening of plant samples by partial filling (MECC)-electrospray ionisation mass spectrometry. Journal of Chromatography. A , 2002, 970(1): 287–296
doi: 10.1016/S0021-9673(02)00381-3
13 Suomi J, Sirén H, Jussila M, Wiedmer S K, Riekkola M L. Determination of iridoid glycosides in larvae and adults of butterfly Melitaea cinxia by partial filling micellar electrokinetic capillary chromatography-electrospray ionisation mass spectrometry. Analytical and Bioanalytical Chemistry , 2003, 376(6): 884–889
doi: 10.1007/s00216-003-2003-1
14 Helfrich E, Rimpler H. Iridoid glycosides from Gmelina philippensis. Phytochemistry , 2000, 54(2): 191–199
doi: 10.1016/S0031-9422(00)00060-1
15 Bowers M D. Hostplant suitability and defensive chemistry of the Catalpa sphinx, Ceratomia catalpae. Journal of Chemical Ecology , 2003, 29(10): 2359–2367
doi: 10.1023/A:1026234716785
16 Fan L, Zhang W, Guo D, Tan Z R, Xu P, Li Q, Liu Y Z, Zhang L, He T Y, Hu D L, Wang D, Zhou H H. The effect of herbal medicine baicalin on pharmacokinetics of rosuvastatin, substrate of organic anion-transporting polypeptide 1B1. Clinical Pharmacology and Therapeutics , 2008, 83(3): 471–476
doi: 10.1038/sj.clpt.6100318
17 Liu C X, Yi X L, Si D Y, Xiao X F, He X, Li Y Z. Herb-drug interactions involving drug metabolizing enzymes and transporters. Current Drug Metabolism , 2011, 12(9): 835–849
doi: 10.2174/138920011797470083
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed