Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (1) : 103-109    https://doi.org/10.1007/s11705-013-1315-8
RESEARCH ARTICLE
Tensile ratcheting behaviors of bronze powder filled polytetrafluoroethylene
Wenjuan XU, Hong GAO(), LiLan GAO, Xu CHEN, Yong WANG
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(534 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of tensile and ratcheting experiments for compacted polytetrafluoroethylene (PTFE) and bronze filled PTFE (PTFE/bronze) were conducted on dynamic mechanical analyzer (DMA-Q800). The effects of mean stress, stress amplitude and temperature on the ratcheting behaviors of PTFE and PTFE/bronze were investigated. It is found that the stress-strain response of PTFE/bronze is nonlinear and its elastic modulus is higher than that of pure PTFE. For uniaxial ratcheting test, the dissipation strain energy density (DSED) decreases rapidly in the first 10 cycles and approaches a constant after 20 cycles. The ratcheting strain and the DSED corresponding to 100 cycles increase with increasing mean stress, stress amplitude and temperature. Additionally, the DSED and ratcheting strain of PTFE/bronze are much lower than those of pure PTFE under the same experimental conditions. It is also found that both pure PTFE and PTFE/bronze present cyclic hardening characteristics. Above all, the addition of bronze can improve both the uniaxial tensile property and the cyclic property of PTFE.

Keywords bronze filled polytetrafluoroethylene (PTFE/bronze)      uniaxial tensile behavior      ratcheting behavior      dissipation strain energy density (DSED)     
Corresponding Author(s): GAO Hong,Email:hgao@tju.edu.cn   
Issue Date: 05 March 2013
 Cite this article:   
Wenjuan XU,Hong GAO,LiLan GAO, et al. Tensile ratcheting behaviors of bronze powder filled polytetrafluoroethylene[J]. Front Chem Sci Eng, 2013, 7(1): 103-109.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1315-8
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I1/103
SpecimensMean stressσm/MPaStress amplitude σa=Δσ/2(MPa)Filled or notTemperature /°C
S0131filledRT
S0232filledRT
S0333filledRT
S0422filledRT
S0542filledRT
S061.51.5filled30
S071.51.5filled80
S081.51.5filled120
S091.51.5filled150
S101.51.5filled200
PS0122notRT
PS0232notRT
PS0342notRT
PS0431notRT
PS0533notRT
PS061.51.5not30
PS071.51.5not80
PS081.51.5not120
PS091.51.5not150
PS101.51.5not200
Tab.1  Loading conditions of uniaxial ratcheting tests
Stress rate /(MPa?s–1)
0.10.52.5
Elastic modulus /GPaUltimate strength /MPa1.56610.011.64611.102.43212.75
Tab.2  Elastic modulus and ultimate strength of PTFE/bronze at different stress rates
Fig.1  Uniaxial tensile curves of PTFE/bronze and pure PTFE
Fig.1  Uniaxial tensile curves of PTFE/bronze and pure PTFE
Fig.2  Microscopic structures of PTFE/bronze (a,b) before stretching and (c,d) after stretching
Fig.2  Microscopic structures of PTFE/bronze (a,b) before stretching and (c,d) after stretching
Fig.3  Typical stress-strain response (stress rate= 0.5 MPa/s, = (2±2) MPa)
Fig.3  Typical stress-strain response (stress rate= 0.5 MPa/s, = (2±2) MPa)
Fig.4  The effect of mean stress on ratcheting strain
Fig.4  The effect of mean stress on ratcheting strain
Fig.5  The way to calculate DSED
Fig.5  The way to calculate DSED
Fig.6  The effect of mean stress on DSED
Fig.6  The effect of mean stress on DSED
Fig.7  The effect of stress amplitude on ratcheting strain
Fig.7  The effect of stress amplitude on ratcheting strain
Fig.8  The effect of stress amplitude on DSED
Fig.8  The effect of stress amplitude on DSED
Fig.9  The effect of temperature on ratcheting strain ( = 1.5±1.5 MPa, stress rate= 0.5 MPa/s)
Fig.9  The effect of temperature on ratcheting strain ( = 1.5±1.5 MPa, stress rate= 0.5 MPa/s)
Fig.10  The effect of temperature on DSED
Fig.10  The effect of temperature on DSED
1 Bari S, Hassan T. Anatomy of coupled constitutive models for ratcheting simulation. International Journal of Plasticity , 2000, 16(3-4): 381–409
doi: 10.1016/S0749-6419(99)00059-5
2 Postberg B, Weiss E. Simulation of ratcheting of AISI 316L(N) steel under nonproportional uniaxial loading and high number of load cycles using the Ohno and Wang nonlinear kinematic material model. International Journal of Pressure Vessels and Piping , 2000, 77(5): 207–213
doi: 10.1016/S0308-0161(00)00013-2
3 Yamashita T, Tsukimori K, Nakamura M, Iwata K, Imazu A. A simplified method of evaluating ratcheting in bellows and a test of its validation. International Journal of Pressure Vessels and Piping , 1990, 42(3): 263–285
doi: 10.1016/0308-0161(90)90027-F
4 Yoshida F. Uniaxial and biaxial creep-ratcheting behavior of SUS304 stainless steel at room temperature. International Journal of Pressure Vessels and Piping , 1990, 44(2): 207–223
doi: 10.1016/0308-0161(90)90130-A
5 Kang G Z. Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application. International Journal of Fatigue , 2008, 30(8): 1448–1472
doi: 10.1016/j.ijfatigue.2007.10.002
6 Kang G Z, Liu Y J, Wang Y F, Chen Z W, Xu W. Uniaxial ratchetting of polymer and polymer matrix composites: time-dependent experimental observations. Materials Science and Engineering A. Structural Materials Properties Microstructure and Processing , 2009, 523(1): 13–20
doi: 10.1016/j.msea.2009.06.055
7 Lin Y C, Chen X M, Zhang J. Uniaxial ratchetting behavior of anisotropic conductive adhesive film under cyclic tension. Polymer Testing , 2011, 30(1): 8–15
doi: 10.1016/j.polymertesting.2010.10.003
8 Liu W, Gao Z, Yue Z. Steady ratcheting strains accumulation in varying temperature fatigue tests of PMMA. Materials Science and Engineering A. Structural Materials Properties Microstructure and Processing , 2008, 492(1): 102–109
doi: 10.1016/j.msea.2008.03.042
9 Tao G, Xia Z. Ratcheting behavior of an epoxy polymer and its effect on fatigue life. Polymer Testing , 2007, 26(4): 451–460
doi: 10.1016/j.polymertesting.2006.12.010
10 Zheng X T, Xuan F Z, Zhao P. Ratcheting-creep interaction of advanced 9-12% chromium ferrite steel with anelastic effect. International Journal of Fatigue , 2011, 33(9): 1286–1291
doi: 10.1016/j.ijfatigue.2011.04.009
11 Shariati M, Hatami H, Yarahmadi H, Eipakchi H R. An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading. Materials & Design , 2012, 34: 302–312
doi: 10.1016/j.matdes.2011.08.017
12 Boiler A, Code P V. Section VIII Division I, Appendix 2. New York: American Society of Mechanical Engineers, 2007, 229-232
13 Zhang Z, Chen X. Multiaxial ratcheting behavior of PTFE at room temperature. Polymer Testing , 2009, 28(3): 288–295
doi: 10.1016/j.polymertesting.2008.12.012
14 Zhang Z, Chen X, Wang T. A simple constitutive model for cyclic compressive ratchetting deformation of polyteterafluoroethylene (PTFE) with stress rate effects. Polymer Engineering and Science , 2008, 48(1): 29–36
doi: 10.1002/pen.20813
15 Zhang Z, Chen X, Wang Y. Uniaxial ratcheting behavior of polytetrafluoroethylene at elevated temperature. Polymer Testing , 2010, 29(3): 352–357
doi: 10.1016/j.polymertesting.2010.01.001
16 Chen X, Hui S C. Ratcheting behavior of PTFE under cyclic compression. Polymer Testing , 2005, 24(7): 829–833
doi: 10.1016/j.polymertesting.2005.07.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed