|
|
The effect of pH, solid content, water chemistry and ore mineralogy on the galvanic interactions between chalcopyrite and pyrite and steel balls |
Asghar Azizi1( ), Seid Ziaoddin Shafaei2, Mohammad Noaparast2, Mohammad Karamoozian1 |
1. Department of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood 36199-95161, Iran; 2. School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran |
|
|
Abstract The role of pH, solid content, water chemistry and ore mineralogy on the galvanic interactions between chalcopyrite and pyrite and low alloy steel balls were investigated in the grinding of Sarcheshmeh porphyry copper sulfide ore. All these factors strongly affect the galvanic current between the minerals and the steel during the grinding process. The galvanic current density decreased as the solution pH and percent solids increased. In addition, changing the water in the ball mill from tap to distilled water reduced the galvanic current between the minerals and the balls. Potentiodynamic polarization curves showed that pyrite and chalcopyrite demonstrated typical active-passive-transpassive anodic behavior in the grinding of copper ore. However, the nature of their transitions from the active to the passive state differed. This behavior was not seen in the grinding of pure minerals. In addition, an EDTA extraction technique was employed to quantify the amount of oxidized iron in the mill discharge. The amount of extractable iron was influenced by the same experimental factors and in the same way as the galvanic current.
|
Keywords
steel ball
galvanic interaction
pyrite
chalcopyrite
polarization curves
|
Corresponding Author(s):
Azizi Asghar,Email:azizi.asghar22@yahoo.com
|
Issue Date: 05 December 2013
|
|
1 |
Zhou L, Li H P, Xu L P. Galvanic interaction between galena and pyrite in an open system. Chinese Journal of Geochemistry , 2006, 25(3): 230–237 doi: 10.1007/BF02840416
|
2 |
Vathsala, Natarajan K A. Vathsala, Natarajan K A. Some electrochemical aspects of grinding media corrosion and sphalerite flotation. International Journal of Mineral Processing , 1989, 26(3–4): 193–203 doi: 10.1016/0301-7516(89)90029-X
|
3 |
Yelloji Rao M K, Natarajan K A. Effect of galvanic interaction between grinding media and minerals on sphalerite flotation. International Journal of Mineral Processing , 1989, 27(1–2): 95–109 doi: 10.1016/0301-7516(89)90008-2
|
4 |
Yelloji Rao M K, Natarajan K A. Effect of electrochemical interactions among sulphide minerals and grinding media on chalcopyrite flotation. Minerals and Metallurgical Processing , 1989, 6(3): 146–151
|
5 |
Dutrizac J E, Mac Donald R J C, Ingraham T R. Effect of pyrite, chalcopyrite and digenite on rate of bornite dissolution in acidic ferric sulphate solutions. Canadian Metallurgical Quarterly , 1971, 5(1): 3–7 doi: 10.1179/000844371795103350
|
6 |
Dutrizac J E, Mac Donald R J C. Effect of impurities on the rate of chalcopyrite dissolution. Canadian Metallurgical Quarterly , 1973, 12(4): 409–420 doi: 10.1179/000844373795148548
|
7 |
Linge H G. Reactivity comparison of Australian chalcopyrite concentrates in acidified ferric solution. Hydrometallurgy , 1977, 2(3): 219–233 doi: 10.1016/0304-386X(77)90003-2
|
8 |
Natarajan K A, Reimer S C, Iwasaki I. Corrosive and erosive wear in magnetite taconite grinding. Minerals and Metallurgical Processing , 1984, 1(1): 10–14
|
9 |
Pozzo R L, Iwasaki I. Effect of pyrite and pryyhotite on the corrosive wear of grinding media. Minerals and Metallurgical Processing , 1987, 4(2): 166–171
|
10 |
Moema J S, Papo M J, Slabbert G A, Zimba J. Grinding media quality assurance for the comminution of gold ores. World Gold Conference 2009, the Southern African Institute of Mining and Metallurgy , 2009, 27–34
|
11 |
Brukard W J, Sparrow G L, Woodcock J T. A review of the effects of the grinding environment on the flotation of copper sulphides. International Journal of Mineral Processing , 2011, 100(1–2): 1–13 doi: 10.1016/j.minpro.2011.04.001
|
12 |
Jang J W, Iwasaki I, Moore J J. The effect of galvanic interaction between martensite and ferrite in grinding media wear. Corrosion , 1989, 45(5): 402–407 doi: 10.5006/1.3582036
|
13 |
Yelloji Rao M K, Natarajan K A. Factors influencing ball wear and flotation with respect to ore grinding. Mineral Processing and Extractive Metallurgy Review: An International Journal , 1991, 7(3–4): 137–173 doi: 10.1080/08827509108952670
|
14 |
Natarajan K A. Laboratory studies on ball wear in grinding of a chalcopyrite ore. International Journal of Mineral Processing , 1996, 46(3–4): 205–213 doi: 10.1016/0301-7516(95)00093-3
|
15 |
Majima H, Peter E. Electrochemistry of sulphide dissolution in hydrometallurgical systems. Leningrad: International Mineral Processing Congress, 1968, 13
|
16 |
Huang G, Grano S. Galvanic interaction of grinding media with pyrite and its effect on floatation. Minerals Engineering , 2005, 18(12): 1152–1163 doi: 10.1016/j.mineng.2005.06.005
|
17 |
Ahn J H, Gebhardt G E. Effect of grinding media-chalcopyrite interaction on the self-induced flotation of chalcopyrite. International Journal of Mineral Processing , 1991, 33(1–4): 243–262 doi: 10.1016/0301-7516(91)90056-O
|
18 |
Natarajan K A, Iwasaki I. Electrochemical aspects of grinding media-mineral interactions in magnetite ore grinding. International Journal of Mineral Processing , 1984, 13(1): 53–71 doi: 10.1016/0301-7516(84)90011-5
|
19 |
Pozzo R L, Iwasaki I. An electrochemical study of pyrrhotite-grinding media interaction under abrasive condition. Corrosion , 1987, 43(3): 159–164 doi: 10.5006/1.3583129
|
20 |
Pozzo R L, Iwasaki I. Pyrite-pyrrhotite-grinding media interactions and their effects on media wear and flotation. Journal of the Electrochemical Society , 1989, 136(6): 1734–1740 doi: 10.1149/1.2097001
|
21 |
Huang G, Grano S. Galvanic interaction between grinding media and arsenopyrite and its effect on flotation. Part I: Quantifying galvanic interaction during grinding. International Journal of Mineral Processing , 2006, 78(3): 182–197 doi: 10.1016/j.minpro.2005.10.008
|
22 |
Azizi A, Shafaei S Z, Noaparast M, Karamoozian M.Galvanic interaction between chalcopyrite and pyrite with low alloy and high carbon chromium steel ball. Journal of Chemistry , doi: 10.1155/2013/817218
|
23 |
Rumball J A, Richmond G D. Measurement of oxidation in a base metal flotation circuit by selective leaching with EDTA. International Journal of Mineral Processing , 1996, 48(1–2): 1–20 doi: 10.1016/S0301-7516(96)00010-5
|
24 |
Cullinan V J, Grano S, Greet C J, Johnson N W, Ralston J. Investigating fine galena recovery problems in the lead circuit of Mount Isa mines lead/zinc concentrator. Part1: Grinding media effects. Minerals Engineering , 1999, 12(2): 147–163 doi: 10.1016/S0892-6875(98)00128-9
|
25 |
Greet C J, Smart R St C. Diagnostic leaching of galena and its oxidation products with EDTA. Minerals Engineering , 2002, 15(7): 515–522 doi: 10.1016/S0892-6875(02)00075-4
|
26 |
Rao S R, Moon K S, Leja J, Freyberger W, de Cuyper J. Effect of grinding media on surface reactions and flotation of heavy metal sulphides. In: Flotation A M, Fuerstenau M C, eds. Gaudin Memorial Volume , Vol. 1. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers Inc, 1976, 509–527
|
27 |
Yelloji Rao M K, Natarjan K A. Electrochemical aspects of grinding media-mineral interaction on sulphide flotation. Bulletin of Materials Science , 1988, 10(5): 411–422 doi: 10.1007/BF02744654
|
28 |
Chenje T W, Simbi D J, Navara E. The role of corrosive wear during laboratory milling. Minerals Engineering , 2003, 16(7): 619–624 doi: 10.1016/S0892-6875(03)00132-8
|
29 |
Pavlica J J, Iwasaki I. Electrochemical and magnetic interaction in pyrrhotite flotation. Trans SME-AIME , 1982, 272: 1885–1890
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|