Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (2) : 242-257    https://doi.org/10.1007/s11705-015-1513-7
RESEARCH ARTICLE
Interactions between nano-TiO2 particles and algal cells at moderate particle concentration
Mingyu LIN1,Yao Hsiang TSENG2,Chin-Pao HUANG1,*()
1. Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
2. Department of Chemical Engineering, Taiwan University of Science and Technology, Taipei, Taiwan, China
 Download: PDF(1655 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nano-sized titanium dioxide (nano-TiO2) has wide industrial applications and therefore considerable chances of exposure are created for human beings and ecosystems. To better understand the interactions between nano-TiO2 and aquatic organisms, we first studied TiO2 uptake by algae exemplified by Pseudokirchneriella subcapitata. P. subcapitata were exposed to nano-TiO2 in a series of concentrations and at various pH. TiO2 uptake was quantified using a sedimentation curve analysis technique. After exposure of algae to TiO2, the variation of zeta potential was measured and the morphology of algae-TiO2 aggregate was observed with scanning electron microscopy and the optical microscopy. The steady-state TiO2 uptake was found to be pH-dependent and the isotherms can be described well by Freundlich model. TiO2 deposited on algal surfaces causes the shift of pHzpc of TiO2-covered algae from that of algae toward that of TiO2. The attraction between TiO2-covered algal cells induces the agglomeration of algae and TiO2 and thus the formation of algae-TiO2 aggregates in the size of 12 to 50 μm. The 2-D fractal dimension of the aggregates is pH-dependent and ranges from 1.31 to 1.67. The theoretical analysis of the Gibbs energy of interaction indicates that both TiO2 uptake by algae and the formation of algae-TiO2 aggregate are influenced by the interaction between TiO2 particles.

Keywords nano-TiO2      Pseudokirchneriella subcapitata      algal cells      titanium dioxide uptake     
Corresponding Author(s): Chin-Pao HUANG   
Online First Date: 23 June 2015    Issue Date: 14 July 2015
 Cite this article:   
Mingyu LIN,Yao Hsiang TSENG,Chin-Pao HUANG. Interactions between nano-TiO2 particles and algal cells at moderate particle concentration[J]. Front. Chem. Sci. Eng., 2015, 9(2): 242-257.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1513-7
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I2/242
TiO2 concentration /(mg·L?1) Number concentration of TiO2 /# TiO2 per mL Number ratio of TiO2 to algae (T/A) /# TiO2 per algal cell
30 5.4 × 1011 3.0 × 105
50 9.1 × 1011 5.0 × 105
80 1.5 × 1012 8.0 × 105
100 1.8 × 1012 1.0 × 106
120 2.2 × 1012 1.2 × 106
130 2.4 × 1012 1.3 × 106
150 2.7 × 1012 1.5 × 106
Tab.1  The initial TiO2 concentrations expressed in different ways
Fig.1  An example of the sedimentation curve analysis. Conditions: pH= 4.2, initial TiO2 concentration= 80 mg/L. (a) The linear fit for type 3 after the separation of type 2 and type 3; (b) the linear fit for type 2 after the separation of type 1 and type 2; (c) the linear fit for type?1, (d) The turbidity data (Tmeasured) and the accumulated fitted sedimentation curves (T3, T2 + T3 and Ttotal)
Fig.2  Time constants for type 1, type 2 aggregates (algae-TiO2 aggregates), type 3 particles (free TiO2) and TiO2 particles at pH (a) 4.2, (b) 5.4, (c) 6.9 and (d) 7.3. At pH 7.3, the analysis of sedimentation curves shows that the slope of the linear fit for type 3 is close to zero. The same phenomenon was observed for TiO2 particles at pH 7.3
Fig.3  The calculated β versus the measured RH of TiO2 from DLS measurement. RH of 173, 177 and 228 nm was obtained at pH 4.2 and the 10, 30 and 30 mg/L of TiO2 concentration, respectively. RH of 886 nm was obtained at pH 5.4 and 30 mg/L of the TiO2 concentration. RH of 695 nm was obtained at pH 6.9 and 30 mg/L of TiO2 concentration
Fig.4  The predicted RHversus the measured RH. The shaded area represents the zone of the type 1 aggregates, which have the predicted RH above 70 μm. Type 2 aggregates have the predicted RH in the range of 10 and 70 μm
Fig.5  (a) The relationship of TiO2 adsorption density Γ and mixing time. (b) The relationship of ln (free TiO2 concentration) and mixing time. Conditions: pH= 6.9, initial TiO2 concentration= 120 mg/L and I= 1 mmol/L (NaCl)
Fig.6  The average TiO2 deposition density (Γ) was plotted over the free TiO2 concentration (C) at different pHs (4.2 to 7.3); F 4.2, F5.4, F6.9 and F7.3 are the fitted results of Freundlich model
pH KF /mL per algal cell nF
4.2 3.01×105 64.94
5.4 4.03×10–1 1.88
6.9 2.36×103 4.70
7.3 4.87×105 Infinity
Tab.2  The parameters in multilayer model and free energy calculation at each pH
Fig.7  The Gibbs energy of interaction as a function of the separation distance of an approaching TiO2 particles and the n-layer-TiO2-covered algal surface at pH= (a) 4.2, (b) 5.4, (c) 6.9 and (d) 7.3
Fig.8  The energy barrier, the parameter 1/nF in Freundlich model, and the representative TiO2 uptake (at about 8 × 1011 # TiO2 per mL of free TiO2 concentration), as a function of pH. The maximum of these three curves is all around pH 6.4
Fig.9  Zeta potential of pure algae, pure TiO2 and algae-TiO2 aggregates as a function of pH
Fig.10  SEM images: (a) algal cells in the absence of TiO2; (b) and (c) after exposure to TiO2 (102 mg/L of initial TiO2 concentration)
Fig.11  Optical microscopic images: (a) algal cells in the absence of TiO2; (b)?(d) after exposure to TiO2 (80 mg/L of initial TiO2 concentration). (b), (c) and (d) are obtained at pH 4.2, 5.4 and 9.2, respectively
Fig.12  D2 is the slope of (log A) versus (log l). R2 for the linear regression is 0.67, 0.70, 0.60 and 0.66 at pHs 4.2, 5.4, 6.9 and 7.3, respectively
1 Colvin V L. The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 2013, 21(10): 1166–1170
2 Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622–627
3 Karakoti A S, Hench L L, Seal S. The potential toxicity of nanomaterials: The role of surfaces. JOM, 2006, 58(7): 77–82
4 Long T C, Saleh N, Tilton R D, Lowry G V, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environmental Science & Technology, 2016, 40(14): 4346–4352
5 Kuempel E D, Attfield M D, Vallyathan V, Lapp N L, Hale J M, Smith R J, Castranova V. Pulmonary inflammation and crystalline silica in respirable coal mine dust: Dose-response. Journal of Bio-Science, 2003, 28(1): 61–69
6 Tsuji J S, Maynard A D, Howard P C, James J T, Lam C W, Warheit D B, Santamaria A B. Research strategies for safety evaluation of nanomaterials, part IV: Risk assessment of nanoparticles. Toxicological Sciences, 2006, 89(1): 42–50
7 Linkous C A, Carter G J, Locuson D B, Ouellette A J, Slattery D K, Smitha L A. Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalyst modifications. Environmental Science & Technology, 2000, 34(22): 4754–4758
8 Oberd?rster E. Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives, 2004, 112(10): 1058–1062
9 Kim S C, Lee D K. Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchemical Journal, 2005, 80(2): 227–232
10 Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environmental Science and Pollution Research International, 2006, 13(4): 225–232
11 Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry, 2006, 25(4): 1132–1137
12 Lovern S B, Strickler J R, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environmental Science & Technology, 2007, 41(12): 4465–4470
13 Manier N, Bado-Nilles A, Delalain P, Aguerre-Chariol O, Pandard P. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environmental Pollution, 2013, 180: 67–70
14 Wick P, Manser P, Limbachd L K, Dettlaff-Weglikowskab U, Krumeichc F, Rothb S, Starkd W J, Bruininkaet A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology Letters, 2007, 168(2): 121–131
15 Geiser M, Rothen-Rutishauser B, Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M. Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental Health Perspectives, 2005, 113(11): 1555–1560
16 Limbach L K, Li Y C, Grass R N, Brunner T J, Hintermann M A, Muller M, Gunther D, Stark W J. Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environmental Science & Technology, 2005, 39(23): 9370–9376
17 Chang E, Thek N, Yu W W, Colvin V L, Drezek R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small, 2006, 2(12): 1412–1417
18 Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A M. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environmental Science & Technology, 2006, 40(19): 6151–6156
19 Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspectives, 2006, 114(11): 1697–1702
20 Crist R, Oberholser H K, Shank N, Nguyen M. Nature of bonding between metallic ions and algal cell walls. Environmental Science & Technology, 1981, 15(10): 1212–1217
21 Robinson K A, Baird D J, Wrona F J. Surface metal adsorption on zooplankton carapaces: Implications for exposure and effects in consumer organisms. Environmental Pollution, 2003, 122(2): 159–167
22 Taylor G, Baird D J, Soares A M V M. Surface binding of contaminants by algae: Consequences for lethal toxicity and feeding to Daphnia magna straus. Environmental Toxicology and Chemistry, 1998, 17(3): 412–419
23 Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere, 2011, 83(4): 510–516
24 Ji J, Long Z, Lin D. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 2011, 170(2–3): 525–530
25 Sadip M, Dalai S, Chandrasekaran N, Mukheriee A. Ectotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicity and Environmental Safety, 2011, 74(5): 1180–1187
26 Metzler D M, Li M H, Erdem A, Huang C P. Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 2011, 170(2-3): 538–546
27 Perreault F, Oukarroum A, Melegari S P, Matias W G, Popovic R. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere, 2012, 87(11): 1388–1394
28 Chen P Y, Powell B H, Mortimer M, Ke P C. Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environmental Science & Technology, 2012, 46(21): 12178–12185
29 Ma S, Zhou K, Yang K, Lin D. Heteroagglomeration of oxide nanoparticles with algal cells: Effects of particle type, ionic strength and pH. Environmental Science & Technology, 2005, 49(2): 932–939
30 Xia B, Chen B, Sun X, Qu K, Ma F, Du M. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Science of the Total Environment, 2015, 508: 525–533
31 Vigneault B, Percot A, Lafleur M, Campbell P G C. Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environmental Science & Technology, 2000, 34(18): 3907–3913
32 Moye H A, Miles C J, Phlips E J, Sargent B, Merritt K K. Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water. Environmental Science & Technology, 2002, 36(16): 3550–3555
33 Kaulbach E S, Szymanowski J E S, Fein J B. Surface complexation modeling of proton and Cd adsorption onto an algal cell wall. Environmental Science & Technology, 2005, 39(11): 4060–4065
34 Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 2004, 49(1): 1–14
35 Choi H, Stathatos E, Dionysiou D D. Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B-Environmental, 2006, 63(1-2): 60–67
36 Nohynek G J, Lademann J, Ribaud C J, Roberts M S. Grey goo on the skin nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology, 2007, 37(3): 251–277
37 Kirchnerova J, Cohen M L H, Guy C, Klvana D. Photocatalytic oxidation of n-butanol under fluorescent visible light lamp over commercial TiO2 (Hombicat UV100 and Degussa P25). Applied Catalysis A, General, 2005, 282(1-2): 321–332
38 Lin H, Huang C P, Li W, Ni C, Shah S I, Tseng Y H. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Applied Catalysis B: Environmental, 2006, 68(1-2): 1–11
39 Nicolosi V, Vrbanic V, Mrzel A, McCauley J, O’Flaherty S, McGuinness C, Compagnini G, Mihailovic D, Blau W J, Coleman J N. Solubility of Mo6S4.5I4.5 nanowires in common solvents: A sedimentation study. Journal of Physical Chemistry B, 2005, 109(15): 7124–7133
40 Burger R. Phenomenological foundation and mathematical theory of sedimentation-consolidation processes. Chemical Engineering Journal, 2000, 80(1-3): 177–188
41 Reynolds C S. The Ecology of Freshwater Phytoplankton. London: Cambridge University Press, 1984, 384
42 Smoluchowski M. Versuch einer mathematischen theorie der koagulations kinetic kolloider l?sungen. Zeitschrift für Physikalische Chemie, 1917, 92: 129–168
43 Jiang Q, Logan B E. Fractal dimensions of aggregates determined from steady-state size distributions. Environmental Science & Technology, 1991, 25(12): 2031–2038
44 Chakraborti R K, Gardner K H, Atkinson J F, van Benschoten J E. Changes in fractal dimension during aggregation. Water Research, 2003, 37(4): 873–883
45 Phenrat T, Saleh N, Sirk K, Tilton R D, Lowry G V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 2007, 41(1): 284–290
46 McCarthy D N, Nicolosi V, Vengust D, Mihailovic D, Blau W J, Coleman J N. Dispersion and purification of Mo6S3I6 nanowires in organic solvents. Journal of Applied Physics, 2007, 101(1): 014317
47 Kim A S, Yuan R. Hydrodynamics of an ideal aggregate with quadratically increasing permeability. Journal of Colloid and Interface Science, 2005, 285(2): 627–633
48 Adamson A W, Gast A P. Physical Chemistry of Surfaces. New York: John Wiley & Sons Inc, 1997, 511, 522
49 Russel W B, Saville D A, Schowalter W R. Colloidal Dispersions. London: Cambridge University Press, 1989, 506
50 Chithrani B D, Ghazani A A, Chan W C W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 2006, 6(4): 662–668
51 Weber W J, Micginley P M, Katz L E. Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Research, 1991, 25(5): 499–528
52 Elimelech M, O’Melia C R. Effect of particle-size on collision efficiency in the deposition of brownian particles with electrostatic energy barriers. Langmuir, 1990, 6(6): 1153–1163
53 Elimelech M. Kinetics of capture of colloidal particles in packed beds under attractive double layer interactions. Journal of Colloid and Interface Science, 1991, 146(2): 337–352
54 Adamczyk Z. Particle adsorption and deposition: Role of electrostatic interactions. Advances in Colloid and Interface Science, 2003, 100: 267–347
55 Bremer M G E G, Duval J F L, Norde W, Lyklema J. Electrostatic interactions between immunoglobulin (IgG) molecules and a charged sorbent. Colloids and Surfaces, 2004, A 250: 29–42
56 McClements D J. Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir, 2005, 21(21): 9777–9785
57 Hogg R, Healy T W, Fuerstenau D W. Mutual coagulation of colloidal dispersions. Transactions of the Faraday Society, 1996, 62(522P): 1638
58 Gregory J. Interaction of unequal double-layers at constant charge. Journal of Colloid and Interface Science, 1975, 51(1): 44–51
59 Yaremko Z M, Tkachenko N H, Bellmann C, Pich A. Redispergation of TiO2 particles in aqueous solutions. Journal of Colloid and Interface Science, 2006, 296(2): 565–571
60 Zhang J. Surface forces between silica surfaces in CnTACl solutions and surface free energy characterization of talc. Dissertation for the Doctoral Degree. Blacksburg: Virginia Polytechnic Institute and State University, 2006
61 Han M Y, Kim W. A theoretical consideration of algae removal with clays. Microchemical Journal, 68(2-3): 157–161
62 Jarvis P, Jefferson B, Gregory J, Parsons S A. A review of floc strength and breakage. Water Research, 2005, 39(14): 3121–3137
63 Alince B. Colloidal particles deposition on pulp fibers. Colloids and Surfaces, 1989, 39(1-3): 39–51
64 Khan S S, Srivashan P, Vaishnvavi N, Mukherjee A, Chandrasekaran N. Interaction of silver nanoparticles with bacterial extracellul<?Pub Caret?>ar proteins and its adsorption isotherms and kinetics. Journal of Hazardous Materials, 2011, 192: 299–306
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed