Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (4) : 511-521    https://doi.org/10.1007/s11705-015-1519-1
RESEARCH ARTICLE
DsbA-DsbAmut fusion chaperon improved soluble expression of human trypsinogen-1 in Escherichia coli
Ye Liu1,2,Wenyong Zhang1,2,5,Xubin Yang1,2,Guangbo Kang3,Damei Wang4,He Huang1,2,*()
1. Key Laboratory of System Bioengineering, Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
3. College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300072, China
4. Gan & Lee Pharmaceuticals, Beijing 101100, China
5. Taiyuan Institute of Technology, Taiyuan 030000, China
 Download: PDF(1089 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A co-expressing system of DsbA-DsbAmut was suggested for the first time to enhance the soluble expression of human trypsin-1. As a control, leaderless DsbA chaperone was also co-expressed with human trypsin-1. Vectors pET39b-trypsin and pET28a-DsbA-DsbAmut-trypsin with the above two DsbA fusion tag were constructed. The strain with vector pET39b-trypsin expressed fusion protein DsbA-trypsin in form of inclusion bodies. While in E. coli BL21 (DE3) strain with vector pET28a-DsbA-DsbAmut-trypsin, the soluble expression of trypsin fusion protein was achieved. Under the optimized expression conditions, the soluble fraction accounted for about 49.43% of total DsbA-DsbAmut-trypsin proteins in crude supernatant. The purification yield was 4.15% by nickel chelating chromatography and 3.3 mg activated trypsin with a purity of 88.68% was obtained from 1 L LB broth. To detect the possible functions of DsbA series chaperons in trypsin fusion protein, we analyzed the primary three-dimensional structure of fusion proteins, mainly focusing on the compatibleness between trypsin and fusion chaperons. The results suggested that (1) besides the primary function in periplasm, leaderless DsbA or DsbAmut may also act as a signal sequences-like leader targeted to periplasm that partly relieved the pressure from fusion protein overexpression and inclusion body formation, and (2) as there was significant soluble expression of DsbA-DsbAmut-trypsin compared with DsbA-trypsin, DsbAmut may function as charge or hydrophobic balance in recombinant protein DsbA-DsbAmut-trypsin.

Keywords DsbA      DsbA-DsbAmut      soluble expression      trypsin      chaperon     
Corresponding Author(s): He Huang   
Online First Date: 20 July 2015    Issue Date: 26 November 2015
 Cite this article:   
Ye Liu,Wenyong Zhang,Xubin Yang, et al. DsbA-DsbAmut fusion chaperon improved soluble expression of human trypsinogen-1 in Escherichia coli[J]. Front. Chem. Sci. Eng., 2015, 9(4): 511-521.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1519-1
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I4/511
Primer name Sequence(5′–3′)
P39-1a) AAAAGTACTATCGTTGGGGGCTATAACTG
P39-2b) CCGCTCGAGTTATTAGCTATTGGCAGCA
D1c) GGAATTCCATATGGCGCAGTATGAAGATGG
D2d) CGGGATCCTTTTTTCTCGCTTAAGTATTTCAC
P1 GCATCATGGCGCAGTATGAAGATGG
P2e) TGATAGCTGTGCGGGCTGAAGAAAG
P3f) CTTCAGCCCGCACAGCTATCAGTTTG
P4 TCTTCATCACCTTTTTTCTCGCTTA
P5 CACCTTTTTTCTCGCTTAAGTATTTC
P6 GAAGATAGCATGCCCGATTCTCTGGAAGTTCTGTTCCAAGGGCCCGGGCTCGAACGGCC
P7 CTTGTCGTCGTCGTCCATGATGCATTGCGGCCGTTCGAGCCCGGGC
P8 GGGCCCGGGCTCGAACGGCCGCAATGCATCATGGCGCAGTATG
P9 CGGGATCCGGTGATGAAGATGAAGAT
P10 AACTTCCAGAGAATCGGGCATGCTATCTTCATCTTCATCACCTTTTTTCT
P11 cTCTTGTCGTCGTCGTCcatgatgcattgcggccgttcgagcccgggccc
P12g CCGctcgagtgcggccgcgtcgacaagcttagtacTCTTGTCGTCGTCGTC
Tab.1  Sequences of primers used in this study
Fig.1  Construction for pET28a-DsbA-DsbAmut-trypsin expression vector: (a) Construction details for fragment linker-DsbAmut-linker-DDDDK-MCS (MCS includes ScaI, HindIII, Not1, XhoI restriction sites); (b) Process for construction of pET28a-DsbA-DsbAmut-trypsin; (c) The expression cassette harbored by pET28a-DsbA-DsbAmut-trypsin
Fig.2  (a) SDS-PAGE analysis of DsbA-trypsin: lane 1, supernatant (IPTG-induced); lane 2, precipitate (IPTG-induced); lane 3, supernatant (NO IPTG-induced); lane 4, precipitate (NO IPTG-induced). (b) SDS-PAGE analysis of DsbA-trypsin after renaturation: lanes 1~2, supernatant; lane 2, precipitate; lane 3, renaturation reagent control; lane 4, thrombin control; lane 5, porcine trypsin control; lanes 6?7, digestion product by thrombin after 5 h and 12 h, respectively. (c) Expression and detection of DsbA-DsbAmut-trypsin: lane 1, supernatant (IPTG-induced); lane 2, supernatant (NO IPTG-induced); lane 3, precipitate (IPTG-induced); lane 4, precipitate (NO IPTG-induced)
Fig.3  Disulfide bridges distribution in human trypsin-1. Four disulfide bridges were exposed in surface of human trypsin-1 (C22-C157, C191-C220, C42-C58, C136-C201), and one was buried inherently (C168-C182). The red, blue and azure balls represent positive, negative and nonpolar residues on protein surface, respectively
Fig.4  Purification of fusion protein DsbA-DsbAmut-trypsin: (a) Imidazole concentration: lane 1, 500 mmol·L−1; lane 2, 50 mmol·L−1; lane 3, 40 mmol·L−1; lane 4, 20 mmol·L−1; lane 5, supernatant (IPTG-induced); (b) SDS-PAGE analysis of the purified fractions: lane 1, supernatant (IPTG-induced); lane 2, precipitate (IPTG-induced). Imidazole concentration in elution buffer: lane 3, 30 mmol·L−1; lane 4, 500 mmol·L−1
Fig.5  Electrostatic potential file of (a) DsbA-linker (reduced type), (b) DsbA-linker (oxidized type), (c) DsbAmut-linker, and (d) human trypsin-1. The connection amino?acids that distinguishes different parts of DsbA-DsbAmut-trypsin have been labeled (connections: a, ALA195-c: ALA1; b, ALA195-c: ALA1; c, TYR202-d: ILE16)
Fig.6  Statical hydrophobic patches distribution on protein surface: (a) DsbA-linker (reduced type), (b) DsbA-linker (oxidized type), (c) DsbAmut-linker, and (d) human trypsin-1. The connection amino acids that distinguishes different parts of DsbA-DsbAmut-trypsin have been labeled (connections: a, ALA195-c: ALA1, or b, ALA195-c: ALA1; c, TYR202-d: ILE16)
Step Target protein concentration /(mg·L−1) Yield /% Purity /% Specific activity /(U·mg−1)
Crude extract 79.51 100 13.4 1612.07
Affinity chromatography 3.30 4.15 88.68 14036.46
Tab.2  Purification of DsbA-DsbAmut-trypsin-1 in E. coli
1 Kemmler  W. Peterson  J D, Steiner  D F. Studies on the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and Carboxypeptidase B. Journal of Biological Chemistry, 1971, 246(22): 6786–6791
2 Marcus-Sekura  C, Richardson  J C, Harston  R K, Sane  N, Sheets  R L. Evaluation of the human host range of bovine and porcine viruses that may contaminate bovine serum and porcine trypsin used in the manufacture of biological products. Biologicals, 2011, 39(6): 359–369
3 Guy  O, Lombardo  D, Bartelt  D C, Amic  J, Figarella  C. Two human trypsinogens. Purification, molecular properties, and N-terminal sequences. Biochemistry-US, 1978, 17(9): 1669–1675
4 Kukor  Z, Toth  M, Sahin-Toth  M. Human anionic trypsinogen—Properties of autocatalytic activation and degradation and implications in pancreatic diseases. European Journal of Biochemistry, 2003, 270(9): 2047–2058
5 Kiraly  O, Guan  L, Szepessy  E, Toth  M, Kukor  Z, Sahin-Toth  M. Expression of human cationic trypsinogen with an authentic N-terminus using intein-mediated splicing in Aminopeptidase P deficient Escherichia coli. Protein Expression and Purification, 2006, 48(1): 104–111
6 Chen  J M, Kukor  Z, Le Marechal  U, Toth  M, Tsakiris  L, Raguenes  O, Ferec  C, Sahin-Toth  M. Evolution of trypsinogen activation peptides. Molecular Biology and Evolution, 2003, 20(11): 1767–1777
7 Vasquez  J R, Evnin  L B, Higaki  J N, Craik  C S. An expression system for trypsin. Journal of Cellular Biochemistry, 1989, 39(3): 265–276
8 Szilagyi  L, Kenesi  E, Katona  G, Kaslik  G, Juhasz  G, Graf  L. Comparative in vitro studies on native and recombinant human cationic trypsins. Cathepsin B is a possible pathological activator of trypsinogen in pancreatitis. Journal of Biological Chemistry, 2001, 276(27): 24574–24580
9 Peterson  F C, Gordon  N C, Gettins  P G. High-level bacterial expression and 15N-alanine-labeling of bovine trypsin. Application to the study of trypsin-inhibitor complexes and trypsinogen activation by NMR spectroscopy. Biochemistry, 2001, 40(21): 6275–6283
10 Hohenblum  H, Vorauer-Uhl  K, Katinger  H, Mattanovich  D. Bacterial expression and refolding of human trypsinogen. Journal of Biotechnology, 2004, 109(1−2): 3–11
11 Lichty  J J, Malecki  J L, Agnew  H D, Michelson-Horowitz  D J, Tan  S. Comparison of affinity tags for protein purification. Protein Expression and Purification, 2005, 41(1): 98–105
12 Esposito  D, Chatterjee  D K. Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 2006, 17(4): 353–358
13 Bardwell  J C, McGovern  K, Beckwith  J. Identification of a protein required for disulfide bond formation in vivo. Cell, 1991, 67(3): 581–589
14 Guddat  L W, Bardwell  J C A, Martin  J L. Crystal structures of reduced and oxidized DsbA: Investigation of domain motion and thiolate stabilization. Structure, 1998, 6(6): 757–767
15 Schirra  H J, Renner  C, Czisch  M, Huber-Wunderlich  M, Holak  T A, Glockshuber  R. Structure of reduced DsbA from Escherichia coli in solution. Biochemistry, 1998, 37(18): 6263–6276
16 Zapun  A, Bardwell  J C, Creighton  T E. <?Pub Caret1?>The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry, 1993, 32(19): 5083–5092
17 Grauschopf  U, Winther  J R, Korber  P, Zander  T, Dallinger  P, Bardwell  J C. Why is DsbA such an oxidizing disulfide catalyst? Cell, 1995, 83(6): 947–955
18 Winter  J, Neubauer  P, Glockshuber  R, Rudolph  R. Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. Journal of Biotechnology, 2001, 84(2): 175–185
19 Dutta  S, Ghosh  R, Dattagupta  J K, Biswas  S. Heterologous expression of a thermostable plant cysteine protease in Escherichia coli both in soluble and insoluble forms. Process Biochemistry, 2010, 45(8): 1307–1312
20 Huang  H, Gan  Y R, Sun  Y. Cloning and fusion expression of bovine enterokinase light chain gene in Escherichia coli. Hereditas, 2003, 25(6): 685–690
21 Kim  B, Hyun  Y J, Lee  K S, Kobashi  K, Kim  D H. Cloning, expression and purification of arylsulfate sulfotransferase from Eubacterium A-44. Biological & Pharmaceutical Bulletin, 2007, 30(1): 11–14
22 Thorstenson  Y R, Zhang  Y, Olson  P S, Mascarenhas  D. Leaderless polypeptides efficiently extracted from whole cells by osmotic shock. Journal of Bacteriology, 1997, 179(17): 5333–5339
23 Zhang  Y, Olsen  D R, Nguyen  K B, Olson  P S, Rhodes  E T, Mascarenhas  D. Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expression and Purification, 1998, 12(2): 159–165
24 Schein  C H, Noteborn  M H M. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nature Biotechnology, 1988, 6(3): 291–294
25 Kopetzki  E, Schumacher  G, Buckel  P. Control of formation of active soluble or inactive insoluble baker’s yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. Molecular & General Genetics: MGG, 1989, 216(1): 149–155
26 Yang  Q, Xu  J, Li  M, Lei  X, An  L. High-level expression of a soluble snake venom enzyme, gloshedobin, in E. coli in the presence of metal ions. Biotechnology Letters, 2003, 25(8): 607–610
27 Ling  Z, Ma  T, Li  J, Du  G, Kang  Z, Chen  J. Functional expression of trypsin from Streptomyces griseus by Pichia pastoris. Journal of Industrial Microbiology & Biotechnology, 2012, 39(11): 1651–1662
28 Guex  N, Peitsch  M C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15): 2714–2723
29 Thaker  Y R, Roessle  M, Gruber  G. The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. Journal of Bioenergetics and Biomembranes, 2007, 39(4): 275–289
30 Diaz  A A, Tomba  E, Lennarson  R, Richard  R, Bagajewicz  M J, Harrison  R G. Prediction of protein solubility in Escherichia coli using logistic regression. Biotechnology and Bioengineering, 2010, 105(2): 374–383
https://doi.org/10.1002/bit.22537
31 Wilkinson  D L, Harrison  R G. Predicting the solubility of recombinant proteins in Escherichia coli. Bio/Technology, 1991, 9(5): 443–448
32 Shao  S, Yu  R, Yu  Y, Li  Y. Dual-inhibitors of STAT5 and STAT3: Studies from molecular docking and molecular dynamics simulations. Journal of Molecular Modeling, 2014, 20(8): 2399
33 Shi  C, Yu  R, Shao  S, Li  Y. Partial activation of alpha7 nicotinic acetylcholine receptors: Insights from molecular dynamics simulations. Journal of Molecular Modeling, 2013, 19(2): 871–878
34 Sommaruga  S, De Palma  A, Mauri  P L, Trisciani  M, Basilico  F, Martelli  P L, Casadio  R, Tortora  P, Occhipinti  E. A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase. Proteins, 2008, 71(4): 1843–1852
35 Ewalt  K L, Hendrick  J P, Houry  W A, Hartl  F U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell, 1997, 90(3): 491–500
36 Baneyx  F, Mujacic  M. Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 2004, 22(11): 1399–1408
37 Couture  M M, Auger  M, Rosell  F, Mauk  A G, Boubour  E, Lennox  R B, Eltis  L D. Investigation of the role of a surface patch in the self-association of Chromatium vinosum high potential iron-sulfur protein. Biochimica et Biophysica Acta, 1999, 1433(1−2): 159–169
38 Rezaei-Ghaleh  N, Ramshini  H, Ebrahim-Habibi  A, Moosavi-Movahedi  A A, Nemat-Gorgani  M. Thermal aggregation of alpha-chymotrypsin: Role of hydrophobic and electrostatic interactions. Biophysical Chemistry, 2008, 132(1): 23–32
39 Kumarevel  T S, Gromiha  M M, Ponnuswamy  M N. Analysis of hydrophobic and charged patches and influence of medium- and long-range interactions in molecular chaperones. Biophysical Chemistry, 1998, 75(2): 105–113
40 Neupert  W, Hartl  F U, Craig  E A, Pfanner  N. How do polypeptides cross the mitochondrial membranes? Cell, 1990, 63(3): 447–450
41 Flynn  G C, Pohl  J, Flocco  M T, Rothman  J E. Peptide-binding specificity of the molecular chaperone BiP. Nature, 1991, 353(6346): 726–730
42 Richarme  G, Kohiyama  M. Specificity  of the Escherichia coli chaperone DnaK (70-kDa heat shock protein) for hydrophobic amino acids. Journal of Biological Chemistry, 1993, 268(32): 24074–24077
43 Zbilut  J P, Mitchell  J C, Giuliani  A, Colosimo  A, Marwan  N, Webber  C L. Singular hydrophobicity patterns and net charge: A mesoscopic principle for protein aggregation/folding. Physica A: Statistical Mechanics and its Applications, 2004, 343: 348–358
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed