Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (4) : 509-516    https://doi.org/10.1007/s11705-016-1586-y
RESEARCH ARTICLE
Oil bleed from elastomeric thermal silicone conductive pads
Yuqi Chen1,Yakai Feng1,2(),Jingqi Zhao3,Jingbo Shen3,Menghuang Feng3
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300072, China
3. Tianjin Laird Electronic Material Co., Ltd. Tianjin 300457, China
 Download: PDF(309 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Oil bleed is a serious problem in elastomeric thermal silicone conductive pads. The components of the oil bleed and the effect of the silicone chemical parameters on the amount of oil bleed have been determined. The main components of oil bleeds are the uncrosslinked silicones in the cured resins, which include the unreacted silicone materials and the macromolecular substances produced by the hydrosilylation reaction. Cured resins with a high crosslinking density and a high molecular weight of vinyl silicone residues had a lower amount of oil bleed. In addition, a low Si-H content also reduced the amount of oil bleed.

Keywords oil bleed      crosslinking density      molecular weight      vinyl silicones      hydrosilicones     
Corresponding Author(s): Yakai Feng   
Just Accepted Date: 26 August 2016   Online First Date: 12 September 2016    Issue Date: 29 November 2016
 Cite this article:   
Yuqi Chen,Yakai Feng,Jingqi Zhao, et al. Oil bleed from elastomeric thermal silicone conductive pads[J]. Front. Chem. Sci. Eng., 2016, 10(4): 509-516.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1586-y
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I4/509
Fig.1  Crosslinking reaction of silicone resins
Fig.2  An example of bleeding oils on the device surface
Resin ID Si-Vi or Si-H content by weight /%
Vi-1 0.13
Vi-2 0.16
Vi-3 0.31
Vi-4 0.71
H-1 0.11
H-2 0.50
H-3 0.75
Tab.1  The weight content of functional groups in the silicones
Vinyl silicones Ratio (Si-Vi : Si-H)
Hydrosilicone H-1 Hydrosilicone H-2 Hydrosilicone
H-3
Vi-1 1 : 1.14 3 : 1 3 : 1
Vi-2
Vi-3
Vi-4
Tab.2  Molar ratio of Si-Vi : Si-H for the simplified silicone matrix model system
Resin ID Si-H content /(10?3 mol?g?1) Si-Vi content /(10?5 mol?g?1) Number-average molecular weight per Si-Vi a) Molecular weight
Vi-1 4.44 22500 30900 2.08
Vi-2 5.92 16900 21710 2.48
Vi-3 11.85 8440 15230 2.26
Vi-4 25.92 3860 8290 1.95
H-1 1.00
H-2 5.00
H-3 7.50
Tab.3  Si-Vi and Si-H contents for the silicones as determined by 1H NMR and molecular weight for the vinyl silicones as determined by GPC
Fig.3  Partial 1H NMR spectra of the bleeding oils from the cured resin of Vi-2 reacted with H-1, the original vinyl silicone Vi-2, and H-1
Fig.4  GPC data of vinyl silicone Vi-2 (black line), uncrosslinked components in the cured resin (red line), and bleeding oils (blue line) from the cured resin when Vi-2 reacted with H-1
Fig.5  Partial 1H NMR spectra of bleeding oils from Vi-1 reacted with H-1, and original silicone materials
Fig.6  GPC data of vinyl silicone (black line), uncrosslinked components in cured resin (red line), and bleeding oils (blue line) from the cured resin of Vi-1 reacted with H-1
Fig.7  Partial 1H NMR spectra of bleeding oils from cured resin of Vi-1 reacted with H-2, original silicone Vi-1 and H-2 (Si-Vi : Si-H of 3 : 1)
Fig.8  GPC data of vinyl silicone Vi-1 (black line), uncrosslinked components in cured resin (red line), and bleeding oils (blue line) of cured resin of when Vi-1 reacted with H-2
Fig.9  Effect of crosslinking density on oil bleed when vinyl silicones reacted with H-1 at the ratio of Si-Vi : Si-H= 1 : 1.14
Fig.10  Effect of molecular weight of vinyl silicones on oil bleed when vinyl silicones reacted with H-2 at the ratio of Si-Vi : Si-H= 3 : 1
Fig.11  Effect of molecular weight of polydimethylsiloxane (PDMS, 1%) on oil bleed
Fig.12  Effect of hydrosilicones on oil bleed from cured resins when different vinyl silicones reacted with H-2 and H-3 at a molar ratio of Si-Vi : Si-H= 3 : 1
1 Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta, 2005, 430(1-2): 155–165
https://doi.org/10.1016/j.tca.2004.12.024
2 Rachel G. Thermal interface materials: Opportunities and challenges for developers. Translational Materials Research, 2015, 2(2): 020301
https://doi.org/10.1088/2053-1613/2/2/020301
3 Kim E S, Kim E J, Shim J H, Yoon J S. Thermal stability and ablation properties of silicone rubber composites. Journal of Applied Polymer Science, 2008, 110(2): 1263–1270
https://doi.org/10.1002/app.28633
4 Jiang Q, Wang X, Zhu Y T, Hui D, Qiu Y P. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Composites. Part B, Engineering, 2014, 56: 408–412
https://doi.org/10.1016/j.compositesb.2013.08.064
5 Crawford B, Doherty A P, Spedding P L, Herron W, Proctor M. Viscosity of siloxane gum and silicone rubbers. Asia-Pacific Journal of Chemical Engineering, 2010, 5(6): 882–894
https://doi.org/10.1002/apj.419
6 Salam M H, El-Gamal S, El-Maqsoud D M, Abd Mohsen M. Correlation of electrical and swelling properties with nano free-volume structure of conductive silicone rubber composites. Polymer Composites, 2013, 34(12): 2105–2115
https://doi.org/10.1002/pc.22619
7 Zha J W, Zhu Y H, Li W K, Bai J B, Dang Z M. Low dielectric permittivity and high thermal conductivity silicone rubber composites with micro-nano-sized particles. Applied Physics Letters, 2012, 101(6): 062905
https://doi.org/10.1063/1.4745509
8 Zhou W Y, Wang C F, An Q L, Ou H Y. Thermal properties of heat conductive silicone rubber filled with hybrid fillers. Journal of Composite Materials, 2008, 42(2): 173–187
https://doi.org/10.1177/0021998307086184
9 Chen L F, Xie H Q. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 352(1-3): 136–140
https://doi.org/10.1016/j.colsurfa.2009.10.015
10 Kemaloglu S, Ozkoc G, Aytac A. Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochimica Acta, 2010, 499(1-2): 40–47
https://doi.org/10.1016/j.tca.2009.10.020
11 Cheng J P, Liu T, Zhang J, Wang B B, Ying J, Liu F, Zhang X B. Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites. Applied Physics. A, Materials Science & Processing, 2014, 117(4): 1985–1992
https://doi.org/10.1007/s00339-014-8606-x
12 Mi Y N, Liang G Z, Gu A J, Zhao F P, Yuan L. Thermally conductive aluminum nitride-multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss. Industrial & Engineering Chemistry Research, 2013, 52(9): 3342–3353
https://doi.org/10.1021/ie3029569
13 Li T, Chen J, Dai H Y, Liu D W, Xiang H W, Chen Z P. Dielectric properties of CaCu3Ti4O12-silicone rubber composites. Journal of Materials Science Materials in Electronics, 2015, 26(1): 312–316
https://doi.org/10.1007/s10854-014-2401-5
14 Paul D R, Mark J E. Fillers for polysiloxane (“silicone”) elastomers. Progress in Polymer Science, 2010, 35(7): 893–901
https://doi.org/10.1016/j.progpolymsci.2010.03.004
15 Mu Q H, Feng S G, Diao G Z. Thermal conductivity of silicone rubber filled with ZnO. Polymer Composites, 2007, 28(2): 125–130
https://doi.org/10.1002/pc.20276
16 Ventura I A, Rahaman A, Lubineau G. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics. Journal of Applied Polymer Science, 2013, 130(4): 2722–2733
https://doi.org/10.1002/app.39438
17 Wang X J, Zhang L Z, Pei L X. Thermal conductivity augmentation of composite polymer materials with artificially controlled filler shapes. Journal of Applied Polymer Science, 2014, 131(8): 39550
https://doi.org/10.1002/app.39550
18 Gan L, Shang S M, Yuen M C W, Jiang S X, Luo N M. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Composites. Part B, Engineering, 2015, 69: 237–242
https://doi.org/10.1016/j.compositesb.2014.10.019
19 Ionita M, Pandele A M, Crica L, Pilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites. Part B, Engineering, 2014, 59: 133–139
https://doi.org/10.1016/j.compositesb.2013.11.018
20 Ji T, Zhang L Q, Wang W C, Liu Y, Zhang X F, Lu Y L. Cold plasma modification of boron nitride fillers and its effect on the thermal conductivity of silicone rubber/boron nitride composites. Polymer Composites, 2012, 33(9): 1473–1481
https://doi.org/10.1002/pc.22277
21 Wu L K, Ying J, Chen L T. Improvement of thermal conductivity of silicone by carbon nanotube array (CNTA). Advanced Materials Research, 2014, 1061-1062: 96–99
https://doi.org/10.4028/www.scientific.net/AMR.1061-1062.96
22 Zhou W Y, Qi S H, Tu C C, Zhao H Z, Wang C F, Kou J L. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. Journal of Applied Polymer Science, 2007, 104(2): 1312–1318
https://doi.org/10.1002/app.25789
23 Zhou W Y, Yu D M, Wang C F, An Q L, Qi S H. Effect of filler size distribution on the mechanical and physical properties of alumina-filled silicone rubber. Polymer Engineering and Science, 2008, 48(7): 1381–1388
https://doi.org/10.1002/pen.21113
24 Zhou W Y, Qi S H, Zhao H Z, Liu N L. Thermally conductive silicone rubber reinforced with boron nitride particle. Polymer Composites, 2007, 28(1): 23–28
https://doi.org/10.1002/pc.20296
25 Zou H, Zhang L Q, Tian M, Wu S Z, Zhao S H. Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. Journal of Applied Polymer Science, 2010, 115(5): 2710–2717
https://doi.org/10.1002/app.29901
26 René S, Stefan R L, Katrin A, Martina B, André B, Thomas G. Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity. Macromolecular Materials and Engineering, 2015, 300(1): 80–85
https://doi.org/10.1002/mame.201400172
27 Shang S M, Gan L, Yuen M C W, Jiang S X, Luo M N. Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties. Composites. Part A, Applied Science and Manufacturing, 2014, 66: 135–141
https://doi.org/10.1016/j.compositesa.2014.07.014
28 Das A, Kasaliwal G R, Jurk R, Boldt R, Fischer D, Stöckelhuber K W, Heinrich G. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Composites Science and Technology, 2012, 72(16): 1961–1967
https://doi.org/10.1016/j.compscitech.2012.09.005
29 Wang Q, Gao W, Xie Z M. Highly thermally conductive room-temperature-vulcanized silicone rubber and silicone grease. Journal of Applied Polymer Science, 2003, 89(9): 2397–2399
https://doi.org/10.1002/app.12363
30 Stein J, Lewis L N, Gao Y, Scott R A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors. Journal of the American Chemical Society, 1999, 121(15): 3693–3703
https://doi.org/10.1021/ja9825377
31 Lweis L N, Colborn R E, Grade H, Bryant G L Jr, Sumpter C A, Scott R A. Mechanism of formation of platinum(0) complexes containing silicon-vinyl ligands. Organometallics, 1995, 14(5): 2202–2213
https://doi.org/10.1021/om00005a021
32 Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Synthesis of an adhesion-enhancing polysiloxane containing epoxy groups for addition-cure silicone light emitting diodes encapsulant. Polymers for Advanced Technologies, 2014, 25(9): 927–933
https://doi.org/10.1002/pat.3327
33 Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Preparation and performance of phenyl-vinyl-POSS/addition-type curable silicone rubber hybrid material. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(8): 639–645
https://doi.org/10.1080/10601325.2014.924837
34 Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Fabrication of siloxane hybrid material with high adhesion and high refractive index for light emitting diodes (LEDs) encapsulation. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(8): 653–658
https://doi.org/10.1080/10601325.2014.925264
35 Gan L, Shang S M, Jiang S X. Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Composites. Part B, Engineering, 2016, 84: 294–300
https://doi.org/10.1016/j.compositesb.2015.08.073
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed