|
|
Oil bleed from elastomeric thermal silicone conductive pads |
Yuqi Chen1,Yakai Feng1,2( ),Jingqi Zhao3,Jingbo Shen3,Menghuang Feng3 |
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2. Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300072, China 3. Tianjin Laird Electronic Material Co., Ltd. Tianjin 300457, China |
|
|
Abstract Oil bleed is a serious problem in elastomeric thermal silicone conductive pads. The components of the oil bleed and the effect of the silicone chemical parameters on the amount of oil bleed have been determined. The main components of oil bleeds are the uncrosslinked silicones in the cured resins, which include the unreacted silicone materials and the macromolecular substances produced by the hydrosilylation reaction. Cured resins with a high crosslinking density and a high molecular weight of vinyl silicone residues had a lower amount of oil bleed. In addition, a low Si-H content also reduced the amount of oil bleed.
|
Keywords
oil bleed
crosslinking density
molecular weight
vinyl silicones
hydrosilicones
|
Corresponding Author(s):
Yakai Feng
|
Just Accepted Date: 26 August 2016
Online First Date: 12 September 2016
Issue Date: 29 November 2016
|
|
1 |
Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta, 2005, 430(1-2): 155–165
https://doi.org/10.1016/j.tca.2004.12.024
|
2 |
Rachel G. Thermal interface materials: Opportunities and challenges for developers. Translational Materials Research, 2015, 2(2): 020301
https://doi.org/10.1088/2053-1613/2/2/020301
|
3 |
Kim E S, Kim E J, Shim J H, Yoon J S. Thermal stability and ablation properties of silicone rubber composites. Journal of Applied Polymer Science, 2008, 110(2): 1263–1270
https://doi.org/10.1002/app.28633
|
4 |
Jiang Q, Wang X, Zhu Y T, Hui D, Qiu Y P. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Composites. Part B, Engineering, 2014, 56: 408–412
https://doi.org/10.1016/j.compositesb.2013.08.064
|
5 |
Crawford B, Doherty A P, Spedding P L, Herron W, Proctor M. Viscosity of siloxane gum and silicone rubbers. Asia-Pacific Journal of Chemical Engineering, 2010, 5(6): 882–894
https://doi.org/10.1002/apj.419
|
6 |
Salam M H, El-Gamal S, El-Maqsoud D M, Abd Mohsen M. Correlation of electrical and swelling properties with nano free-volume structure of conductive silicone rubber composites. Polymer Composites, 2013, 34(12): 2105–2115
https://doi.org/10.1002/pc.22619
|
7 |
Zha J W, Zhu Y H, Li W K, Bai J B, Dang Z M. Low dielectric permittivity and high thermal conductivity silicone rubber composites with micro-nano-sized particles. Applied Physics Letters, 2012, 101(6): 062905
https://doi.org/10.1063/1.4745509
|
8 |
Zhou W Y, Wang C F, An Q L, Ou H Y. Thermal properties of heat conductive silicone rubber filled with hybrid fillers. Journal of Composite Materials, 2008, 42(2): 173–187
https://doi.org/10.1177/0021998307086184
|
9 |
Chen L F, Xie H Q. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 352(1-3): 136–140
https://doi.org/10.1016/j.colsurfa.2009.10.015
|
10 |
Kemaloglu S, Ozkoc G, Aytac A. Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochimica Acta, 2010, 499(1-2): 40–47
https://doi.org/10.1016/j.tca.2009.10.020
|
11 |
Cheng J P, Liu T, Zhang J, Wang B B, Ying J, Liu F, Zhang X B. Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites. Applied Physics. A, Materials Science & Processing, 2014, 117(4): 1985–1992
https://doi.org/10.1007/s00339-014-8606-x
|
12 |
Mi Y N, Liang G Z, Gu A J, Zhao F P, Yuan L. Thermally conductive aluminum nitride-multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss. Industrial & Engineering Chemistry Research, 2013, 52(9): 3342–3353
https://doi.org/10.1021/ie3029569
|
13 |
Li T, Chen J, Dai H Y, Liu D W, Xiang H W, Chen Z P. Dielectric properties of CaCu3Ti4O12-silicone rubber composites. Journal of Materials Science Materials in Electronics, 2015, 26(1): 312–316
https://doi.org/10.1007/s10854-014-2401-5
|
14 |
Paul D R, Mark J E. Fillers for polysiloxane (“silicone”) elastomers. Progress in Polymer Science, 2010, 35(7): 893–901
https://doi.org/10.1016/j.progpolymsci.2010.03.004
|
15 |
Mu Q H, Feng S G, Diao G Z. Thermal conductivity of silicone rubber filled with ZnO. Polymer Composites, 2007, 28(2): 125–130
https://doi.org/10.1002/pc.20276
|
16 |
Ventura I A, Rahaman A, Lubineau G. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics. Journal of Applied Polymer Science, 2013, 130(4): 2722–2733
https://doi.org/10.1002/app.39438
|
17 |
Wang X J, Zhang L Z, Pei L X. Thermal conductivity augmentation of composite polymer materials with artificially controlled filler shapes. Journal of Applied Polymer Science, 2014, 131(8): 39550
https://doi.org/10.1002/app.39550
|
18 |
Gan L, Shang S M, Yuen M C W, Jiang S X, Luo N M. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Composites. Part B, Engineering, 2015, 69: 237–242
https://doi.org/10.1016/j.compositesb.2014.10.019
|
19 |
Ionita M, Pandele A M, Crica L, Pilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites. Part B, Engineering, 2014, 59: 133–139
https://doi.org/10.1016/j.compositesb.2013.11.018
|
20 |
Ji T, Zhang L Q, Wang W C, Liu Y, Zhang X F, Lu Y L. Cold plasma modification of boron nitride fillers and its effect on the thermal conductivity of silicone rubber/boron nitride composites. Polymer Composites, 2012, 33(9): 1473–1481
https://doi.org/10.1002/pc.22277
|
21 |
Wu L K, Ying J, Chen L T. Improvement of thermal conductivity of silicone by carbon nanotube array (CNTA). Advanced Materials Research, 2014, 1061-1062: 96–99
https://doi.org/10.4028/www.scientific.net/AMR.1061-1062.96
|
22 |
Zhou W Y, Qi S H, Tu C C, Zhao H Z, Wang C F, Kou J L. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. Journal of Applied Polymer Science, 2007, 104(2): 1312–1318
https://doi.org/10.1002/app.25789
|
23 |
Zhou W Y, Yu D M, Wang C F, An Q L, Qi S H. Effect of filler size distribution on the mechanical and physical properties of alumina-filled silicone rubber. Polymer Engineering and Science, 2008, 48(7): 1381–1388
https://doi.org/10.1002/pen.21113
|
24 |
Zhou W Y, Qi S H, Zhao H Z, Liu N L. Thermally conductive silicone rubber reinforced with boron nitride particle. Polymer Composites, 2007, 28(1): 23–28
https://doi.org/10.1002/pc.20296
|
25 |
Zou H, Zhang L Q, Tian M, Wu S Z, Zhao S H. Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. Journal of Applied Polymer Science, 2010, 115(5): 2710–2717
https://doi.org/10.1002/app.29901
|
26 |
René S, Stefan R L, Katrin A, Martina B, André B, Thomas G. Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity. Macromolecular Materials and Engineering, 2015, 300(1): 80–85
https://doi.org/10.1002/mame.201400172
|
27 |
Shang S M, Gan L, Yuen M C W, Jiang S X, Luo M N. Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties. Composites. Part A, Applied Science and Manufacturing, 2014, 66: 135–141
https://doi.org/10.1016/j.compositesa.2014.07.014
|
28 |
Das A, Kasaliwal G R, Jurk R, Boldt R, Fischer D, Stöckelhuber K W, Heinrich G. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Composites Science and Technology, 2012, 72(16): 1961–1967
https://doi.org/10.1016/j.compscitech.2012.09.005
|
29 |
Wang Q, Gao W, Xie Z M. Highly thermally conductive room-temperature-vulcanized silicone rubber and silicone grease. Journal of Applied Polymer Science, 2003, 89(9): 2397–2399
https://doi.org/10.1002/app.12363
|
30 |
Stein J, Lewis L N, Gao Y, Scott R A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors. Journal of the American Chemical Society, 1999, 121(15): 3693–3703
https://doi.org/10.1021/ja9825377
|
31 |
Lweis L N, Colborn R E, Grade H, Bryant G L Jr, Sumpter C A, Scott R A. Mechanism of formation of platinum(0) complexes containing silicon-vinyl ligands. Organometallics, 1995, 14(5): 2202–2213
https://doi.org/10.1021/om00005a021
|
32 |
Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Synthesis of an adhesion-enhancing polysiloxane containing epoxy groups for addition-cure silicone light emitting diodes encapsulant. Polymers for Advanced Technologies, 2014, 25(9): 927–933
https://doi.org/10.1002/pat.3327
|
33 |
Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Preparation and performance of phenyl-vinyl-POSS/addition-type curable silicone rubber hybrid material. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(8): 639–645
https://doi.org/10.1080/10601325.2014.924837
|
34 |
Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Fabrication of siloxane hybrid material with high adhesion and high refractive index for light emitting diodes (LEDs) encapsulation. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(8): 653–658
https://doi.org/10.1080/10601325.2014.925264
|
35 |
Gan L, Shang S M, Jiang S X. Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Composites. Part B, Engineering, 2016, 84: 294–300
https://doi.org/10.1016/j.compositesb.2015.08.073
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|