Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (4) : 459-471    https://doi.org/10.1007/s11705-016-1594-y
REVIEW ARTICLE
Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring
Anan Wang1,Helen H. Lou1(),Daniel Chen1,Anfeng Yu2,Wenyi Dang2(),Xianchang Li3,Christopher Martin4,Vijaya Damodara1,Ajit Patki3
1. Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA
2. SINOPEC Safety Engineering Institute, Qingdao 266000, China
3. Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA
4. Department of Chemistry, Lamar University, Beaumont, TX 77710, USA
 Download: PDF(603 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Industrial Flares are important safety devices to burn off the unwanted gas during process startup, shutdown, or upset. However, flaring, especially the associated smoke, is a symbol of emissions from refineries, oil gas fields, and chemical processing plants. How to simultaneously achieve high combustion efficiency (CE) and low soot emission is an important issue. Soot emissions are influenced by many factors. Flare operators tend to over-steam or over-air to suppress smoke, which results in low CE. How to achieve optimal flare performance remains a question to the industry and the regulatory agencies. In this paper, regulations in the US regarding flaring were reviewed. In order to determine the optimal operating window for the flare, different combustion mechanisms related to soot emissions were summarized. A new combustion mechanism (Vsoot) for predicting soot emissions was developed and validated against experimental data. Computational fluid dynamic (CFD) models combined with Vsoot combustion mechanism were developed to simulate the flaring events. It was observed that simulation results agree well with experimental data.

Keywords flare      soot emission      combustion mechanism      CFD simulation     
Corresponding Author(s): Helen H. Lou,Wenyi Dang   
Just Accepted Date: 28 September 2016   Online First Date: 09 November 2016    Issue Date: 29 November 2016
 Cite this article:   
Anan Wang,Helen H. Lou,Daniel Chen, et al. Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring[J]. Front. Chem. Sci. Eng., 2016, 10(4): 459-471.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1594-y
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I4/459
Fig.1  Reaction-path diagram of C6H6 production with 15 major intermediate species
Fig.2  Rate of production of the major reactions influencing the production of C6H6
Fig.3  Rate of production of the major reactions influencing the production of C6H5
Fig.4  Error of reduced mechanism Vsoot vs. USC-II
Fig.5  Laminar flame speed for different equivalence ratios for C3H6
Fig.6  Laminar flame speed for different equivalence ratios for CH4
Fig.7  Laminar flame speed for different equivalence ratios for C2H4
Fig.8  Ignition delay time for different temperature for C3H6
Inlet T /K Ignition delay time
Experimental t /µs Vsoot t /µs Error /%
1320 1285 1146.2 10.8
1350 870 880 1.15
1380 615 684.5 11.3
1405 550 550.6 0.11
1435 410 415.5 1.34
1465 375 317.1 15.44
1505 185 223 20.54
1530 140 174.5 24.64
1565 100 125.4 25.4
Tab.1  Comparison of Ignition delay time results
Fig.9  Adiabatic flame temperature of CH4
Fig.10  Adiabatic flame temperature of C2H4
Fig.11  Schematic drawing of an air assisted flare stack and flare tip
Fig.12  Mesh view of computational model for air assisted flare
Case No. Propylene /(kg·s?1) TNG /(kg·s?1) Nitrogen /(kg·s?1) Total /(kg·s?1) T /°C Actual Vent gas LHV Btu/scf Exit velocity /(m·s?1) Air Flow Rate /(kg·s?1) Crosswind speed /(m·s?1)
0.1158 0.0000 0.0000 0.1158 30.5 2108.00 0.43 18.80 5.68
2 0.0446 0.0000 0.0000 0.0446 34.4 2120.00 0.15 10.54 5.81
3 0.0229 0.0024 0.0885 0.1138 35 339.00 0.61 2.48 5.08
4 0.0383 0.0039 0.0746 0.1168 28.9 569.00 0.58 6.34 4.69
5 0.0092 0.0009 0.0344 0.0445 31.1 345.33 0.24 1.05 2.06
6 0.0149 0.0015 0.0278 0.0442 37.2 585.00 0.21 1.42 7.13
Tab.2  Input conditions for 6 air-assist cases
Fig.13  Temperature contours for various air assisted test cases
Air-assisted case No. Experimental results /lb?MMBTU?1 Vsoot simulation results /lb?MMBTU?1 Error /%
1 3.05 4.16 1.36
2 4.6 6.15 1.41
3 3.95 2.84 1.39
4 2.68 2.13 1.26
5 3.45 2.54 1.36
6 8.05 6.78 1.18
Avg. 1.33
Tab.3  Comparison of soot emissions
Case No. CE experiment /% CE Simulation Vsoot /% Error /%
1 96.9 97.32 0.43
2 95.9 94.07 1.91
3 98.3 98.85 0.56
4 97.1 96.07 1.06
5 95.9 94.54 1.42
6 99.4 97.36 2.05
Avg. 1.24
Tab.4  Comparison of combustion efficiency (CE) results
1 Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, DeAngelo B J, Flanner M G, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G, Zender C S. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research, D, Atmospheres, 2013, 118(11): 5380–5552
https://doi.org/10.1002/jgrd.50171
2 Elvidge C D, Ziskin D, Baugh K E, Tuttle B T, Ghosh T, Pack D W, Erwin E H, Zhizhin M. A fifteen year record of global natural gas flaring derived from satellite data. Energies, 2009, 2(3): 595–622
https://doi.org/10.3390/en20300595
3 U.S. EPA. 2009 Final Report: Integrated Science Assessment for Particulate Matter. 2009
4 United States Government Code of Federal Regulations‒Standards of Performance for New Stationary Sources, General Control Device and Work Practice Requirements, 40CFR § 60.18. Available at: (<Date>accessed in April, 2016</Date>)
5 U.S. EPA. 40 CFR Ch. I (7–1–09 Edition), Pt. 60, App. A–4, Meth. 9.: Method 9-Visual determination of the opacity of emissions from stationary sources. Available at: (<Date>accessed in April, 2016</Date>)
6 U.S. EPA Office of Air Quality Planning and Standards (OAQPS). Parameters for properly designed and operated flares, report for flare review panel, 2012. Available at: (<Date>accessed in April, 2016</Date>)
7 Fry C R, Coburn J, International R T I. Peer review of “Parameters for properly designed and operated flares”, 2012. Available at: (<Date>accessed in April, 2016</Date>)
8 Allen D T, Torres V M. 2010 TCEQ Flare Study Final Report. The University of Texas at Austin, The Center for Energy and Environmental Resources, TCEQ PGA No. 582-8-86245-FY09-04 and Task order No. UTA10-000924-LOAT-RP9, 2011
9 Barlow R S, Frank J H. Summary Twelfth International Workshop Measurement and Computation of Turbulent Flames (TNF12).<Date>July 31–August 2</Date>, 2014, Pleasanton, California, USA
10 Action R. Particular Matler (PM) Pollution. Available at: (<Date>accessed in April, 2016</Date>)
11 Stohl A, Klimont Z, Eckhardt S, Kupiainen K, Shevchenko V P, Kopeikin V M, Novigatsky A N. Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics, 2013, 13(17): 8833–8855
https://doi.org/10.5194/acp-13-8833-2013
12 Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Environment. Science and Policy for Sustainable Development, 1988, 40(7): 26
https://doi.org/10.1080/00139157.1999.10544295
13 Qin Z, Yang H, Gardiner W C Jr. Measurement and modeling of shock-tube ignition delay for propene. Combustion and Flame, 2001, 124(1-2): 246–254
https://doi.org/10.1016/S0010-2180(00)00200-5
14 Wang H. A Comprehensive Kinetic Model of Ethylene and Acetylene Oxidation at High Temperatures. Dissertation for the Doctoral Degree. Delaware: University of Delaware, 1998
15 McDaniel M, Tichenor B A. Flare Efficiency Study. US Environmental Protection Agency, Industrial Environmental Research Laboratory, 1983
16 Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd edition. New Jersey: John Wiley & Sons, 2006
17 Current P M. 2.5 levels — soot, dust, and smoke in your metro area. Available at: (<Date>accessed in April, 2016</Date>)
18 Fine Particulate Matter National Ambient Air Quality Standards. State Implementation Plan Requirements; Proposed Rule. Available at: (<Date>accessed in April, 2016</Date>)
19 Kleiveland R N. Modelling of soot formation and oxidation in turbulent diffusion flames. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2005
20 2013 Emissions Inventory Guidelines. Available at: (<Date>accessed in April, 2016</Date>)
21 Fact sheet proposed petroleum refinery risk and technology review and new source performance standards. Available at: (<Date>accessed in April, 2016</Date>)
22 EPA’s strategy for reducing methane and ozone-forming pollution from the oil and natural gas industry. Available at: (<Date>accessed in April, 2016</Date>)
23 EPA. 40 CFR Parts 60 and 63. Petroleum Refinery Sector Risk and Technology Review and New Source Performance Standards. Available at: (<Date>accessed in April, 2016</Date>)
24 Guide, ANSYS FLUENT USER. Release 14.5, ANSYS. Inc., 2012
25 Singh J, Patterson R I A, Kraft M, Wang H. Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames. Combustion and Flame, 2006, 145(1-2): 117–127
https://doi.org/10.1016/j.combustflame.2005.11.003
26 Zhao B, Yang Z, Johnston M V, Wang H, Wexler A S, Balthasar M, Kraft M. Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame. Combustion and Flame, 2003, 133(1-2): 173–188
https://doi.org/10.1016/S0010-2180(02)00574-6
27 Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—A review of chemical reaction pathways. Progress in Energy and Combustion Science, 2000, 26(4-6): 565–608
https://doi.org/10.1016/S0360-1285(00)00009-5
28 Frenklach M. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 2002, 4(11): 2028–2037
https://doi.org/10.1039/b110045a
29 Lautenbergera C W, de Ris J L, Dembsey N A, Barnett J R, Baum H R. A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames. Fire Safety Journal, 2005, 40(2): 141–176
https://doi.org/10.1016/j.firesaf.2004.10.002
30 Colket M B, Hall R J, Sangiovanni J J, Seery D J. The Determination of Rate-Limiting Steps during Soot Formation. No. UTRC89-13 , United Technologies Research Center East Hartford CT, 1989, C-2–C-23
31 Frenklach M, Clary D W, Jr Gardiner W C, Stein S E. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Symposium (International) on Combustion, 1985, 20(1): 887–901
32 Frenklach M, Clary D W, Jr Gardiner W C, Stein S E. Effect of fuel structure on pathways to soot. Symposium (International) on Combustion, 1988, 21(1): 1067–1076
33 Melius C F, Colvin M E, Marinov N M, Pit W J, Senkan S M. Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety. Symposium (International) on Combustion, 1996, 26(1): 685–692
34 Frenklach M. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 2002, 4(11): 2028–2037
https://doi.org/10.1039/b110045a
35 Winans R E, Tomczyk N A, Hunt J E, Solum M S, Pugmire R J, Jiang Y J, Fletcher T H. Model compound study of the pathways for aromatic hydrocarbon formation in soot. Energy & Fuels, 2007, 21(5): 2584–2593
https://doi.org/10.1021/ef070161p
36 Fenklach M, Wang H. Aromatics growth beyond the first ring and the nucleation of soot particles. Divsion of Fuel Chemistry, 1991, 36: 1509
37 Miller J A, Kee R J, Westbrook C K. Chemical kinetics and combustion modeling. Annual Review of Physical Chemistry, 1990, 41(1): 345–387
https://doi.org/10.1146/annurev.pc.41.100190.002021
38 Miller J A, Melius C F. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combustion and Flame, 1992, 91(1): 21–39
https://doi.org/10.1016/0010-2180(92)90124-8
39 Alexiou A, Williams A, Abdalla A Y. A shock-tube investigation of soot formation form toluene/methanol mixtures. In abstracts of papers of the American Chemical Society. Washington, DC: American Chemical Society, 1991, 202, 113
40 Lou H H, Martin C B, Chen D, Li X, Li K, Vaid H, Kumar A T, Singh K D, Bean D P Jr. A reduced reaction mechanism for the simulation in ethylene flare combustion. Clean Technologies and Environmental Policy, 2012, 14(2): 229–239
https://doi.org/10.1007/s10098-011-0394-9
41 Wang H, You X Q, Joshi A V, Davis S G, Laskin A, Egolfopoulos F, Law C K. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 Compounds. <Date>(accessed in May, 2007)</Date>
42 Davis S G, Law C K. Determination of and fuel structure effects on Laminar flame speeds of C1 to C8 hydrocarbons. Combustion Science and Technology, 1998, 140(1-6): 427–449
https://doi.org/10.1080/00102209808915781
43 Vagelopoulos C M, Egolfopoulos F N, Law C K. Further considerations on the determination of Laminar flame speeds with the counterflow twin-flame technique. Symposium (International) on Combustion, 1994, 25(1): 1341–1347
44 Zhu D L, Jomaas G, Zheng X L, Law C K. Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2-C3 hydrocarbons at atmospheric and elevated pressures. Proceedings of the Combustion Institute, 2005, 30(1): 193–200
https://doi.org/10.1016/j.proci.2004.08.228
45 Heghes C I. C1-C4 Hydrocarbon oxidation mechanism. Dissertation for the Doctotal Degree. Heidelberg: Ruprecht-Karls-Universität, 2006
46 Qin Z, Yang H, Gardiner W C Jr. Measurement and modeling of shock-tube ignition delay for propene. Combustion and Flame, 2001, 124(1-2): 246–254
https://doi.org/10.1016/S0010-2180(00)00200-5
47 Ungut A, James H. Autoignition of gaseous fuel-air mixtures near a hot surface. Institution of Chemical Engineers, 1999, 148: 487–502
48 Law C K, Makino A, Lu T F. On the off-stoichiometric peaking of adiabatic flame temperature. Combustion and Flame, 2006, 145(4): 808–819
https://doi.org/10.1016/j.combustflame.2006.01.009
49 Fluent A. 14.5 Theory Guide. Canonsburg, PA: ANSYS Inc. 2012
50 Fenimore C P, Jones G W. Oxidation of soot by hydroxyl radicals. Journal of Physical Chemistry, 1967, 71(3): 593–597
https://doi.org/10.1021/j100862a021
51 Brookes S J, Moss J B. Prediction of soot and thermal radiation in confined turbulent jet diffusion flames. Combustion and Flame, 1999, 116(4): 486–503
https://doi.org/10.1016/S0010-2180(98)00056-X
52 Tesner P A, Snegiriova T D, Knorre V G. Kinetics of dispersed carbon formation. Combustion and Flame, 1971, 17(2): 253–260
https://doi.org/10.1016/S0010-2180(71)80168-2
53 Hall R J, Smooke M D, Colket M B. Physical and chemical Aspects of Combustion. New York: Gordon and Breach, 1997
54 Lindstedt R P. IUTAM Conference on Aerothermo-Chemistry in Combustors. Taiwan: IUTAM, 1991, 145–146
55 McDaniel M, Tichenor B A. Flare efficiency study. Washington: US Environmental Protection Agency, Industrial Environmental Research Laboratory, 1983, 40–49
56 Singh D K, Gangadharan P, Dabade T, Shinde V, Chen D, Lou H H, Richmond P C, Li X. Parametric study of ethylene flare operations using numerical simulation. Engineering Applications of Computational Fluid Mechanics, 2014, 8(2): 211–228
https://doi.org/10.1080/19942060.2014.11015508
[1] Ali SHAHMOHAMMADI,Arezou JAFARI. Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on heat transfer enhancement[J]. Front. Chem. Sci. Eng., 2014, 8(3): 320-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed