Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 317-327    https://doi.org/10.1007/s11705-017-1622-6
RESEARCH ARTICLE
The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag
Remus I. Iacobescu1, Valérie Cappuyns2,3, Tinne Geens4, Lubica Kriskova1, Silviana Onisei1, Peter T. Jones1, Yiannis Pontikes1()
1. KU Leuven, Department of Materials Engineering, 3001 Leuven, Belgium
2. KU Leuven, Department of Earth and Environmental Sciences, 3001 Leuven, Belgium
3. KU Leuven, Faculty of Economics and Business, 1000 Brussels, Belgium
4. KU Leuven, Department of Healthcare and Technology, 3001 Leuven, Belgium
 Download: PDF(417 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study reports on the impact of the curing conditions on the mechanical properties and leaching of inorganic polymer (IP) mortars made from a water quenched fayalitic slag. Three similar IP mortars were produced by mixing together slag, aggregate and activating solution, and cured in three different environments for 28 d: a) at 20 °C and relative humidity (RH) ~ 50% (T20RH50), b) at 20 °C and RH≥90% (T20RH90) and c) at 60 °C and RH ~ 20% (T60RH20). Compressive strength (EN 196-1) varied between 19 MPa (T20RH50) and 31 MPa (T20RH90). This was found to be attributed to the cracks formed upon curing. Geochemical modelling and two leaching tests were performed, the EA NEN 7375 tank test, and the BS EN 12457-1 single batch test. Results show that Cu, Ni, Pb, Zn and As leaching occurred even at high pH, which varied between 10 and 11 in the tank test’s leachates and between 12 and 12.5 in the single batch’s leachates. Leaching values obtained were below the requirements for non-shaped materials of Flemish legislation for As, Cu and Ni in the single batch test.

Keywords inorganic polymer      geochemical leaching modelling      heavy metals      recycling      non-ferrous fayalitic slag      curing     
Corresponding Author(s): Yiannis Pontikes   
Online First Date: 17 March 2017    Issue Date: 23 August 2017
 Cite this article:   
Remus I. Iacobescu,Valérie Cappuyns,Tinne Geens, et al. The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag[J]. Front. Chem. Sci. Eng., 2017, 11(3): 317-327.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1622-6
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/317
Oxides XRF/
wt-%
Elements XRF/
(mg?kg?1)
ICP-OES/ (mg?kg ?1) VLAREMA[ 32] Minerals QXRD /wt-%
FeO 57.4 Cr 4789 8.4 1250 Fayalite 24.1
SiO 2 26.4 Pb 5570 5.5 1250 Magnetite 1.6
ZnO 6.2 Zn 49753 250 1250 Quartz 1.0
Al 2O3 3.4 Cu 3994 375 Amorphous 73.3
CaO 2.3 As 8.4 250
Cr 2O3 0.7 Cd 5.5 10
PbO 0.6 Ni 250 250
MgO 0.7
CuO 0.5
MnO 0.5
Other 1.3
Tab.1  Total oxides and elements composition (determined with XRF (in wt-%), ICP-OES (in mg/kg) and QXRD (in wt-%)) of the fayalitic slag and the thresholds of critical metals content in the starting material, allowed by VLAREMA
Fig.1  Reactivity test of the fayalitic slag in 10 mol/L NaOH showing the dissolution rate of Al, Si, Pb and Zn over time
Fig.2  BEI of a fayalitic slag particle after the reactivity test revealing the remaining crystalline part (mainly fayalite mineral) after dissolving the amorphous part around it. (a) the whole particle (100 µm scale); (b) magnification of a selected area (20 µm scale)
Fig.3  XRD patterns of the reference slag and IPs produced in different curing environments. Peaks identification has not been used due to the major presence of only fayalite mineral
Fig.4  FTIR spectra of the reference slag and IPs produced in different curing environments
Fig.5  BEI of samples T20RH50, T20RH90 and T60RH20. FP: unreacted fayalitic particles; IPB: IP binder; S: sand used as aggregate; R: resin (scale bar 10 µm)
Samples Oxides As and heavy metals (as oxides)
FeO SiO 2 Al 2O3 CaO Na 2O As 2O5 Cr 2O3 NiO PbO ZnO CdO CuO
T20RH50 36.22±7.0 43.77±6.3 3.57±0.6 6.47±0.7 0.66±0.3 0.12±0.03 0.06±0.04 0.01±0.01 0.54±0.16 4.69±1.16 0.01±0.01 0.42±0.18
T20RH90 45.09±8.9 37.07±9.7 3.00±1.2 4.55±1.1 3.19±1.6 0.10±0.06 0.09±0.02 0.04±0.01 0.42±0.23 3.87±0.95 0.01±0.01 0.34±0.18
T60RH20 36.17±5.0 43.75±8.0 4.64±1.8 3.94±1.5 1.45±0.5 0.06±0.02 0.08±0.04 0.03±0.01 0.55±0.16 4.02±0.43 0.01±0.01 0.52±0.19
Tab.2  WDS microanalysis of the major oxides, As and heavy metals (as oxides) in the IP matrix (in wt-%, standard deviation from the mean value is also given, in wt-%)
Samples Compressive strength Flexural strength
Average St. dev. Average St. dev.
T20RH50 19.3 ±2.9 1.8 ±0.0
T20RH90 31.0 ±4.8 3.4 ±0.2
T60RH20 20.6 ±1.7 2.1 ±0.0
Tab.3  Mechanical properties after 28 days of curing (in MPa)
Elements T20RH50 T20RH90 T60RH20
As 165 179 167
Cd bdl a) bdl bdl
Cr 13 5 6
Cu 130 146 174
Pb 69 69 68
Ni 5 10 6
Zn 0 22 39
Ca 351 182 127
Fe 602 362 136
Mg 6 17 2
Tab.4  Cumulative amount of As, Cd, Cr, Cu, Ni, Pb and Zn (in mg•m–2) released in the tank leaching test
Fig.6  Cumulative release of heavy metals, As, Ca, Fe and Mn as a function of time during the tank test
Elements T20RH50 T20RH90 T60RH20 Threshold /(mg•kg –1)
(CMA 2/II/A.9.1.)
As 0.20 0.40 0.20 0.80
Cd bdl a) bdl bdl 0.03
Cr 0.10 0.10 0.20 0.50
Cu 1.40 1.30 1.80 0.50
Pb 0.90 1.80 1.60 1.30
Ni 0.05 0.10 0.06 0.75
Zn 6.30 14.20 6.90 2.80
Ca 127.00 73.00 58.00
Fe 408.00 728.00 708.00
Mn 0.35 0.88 0.70
Tab.5  Amount of As, Cd, Cr, Cu, Ni, Pb and Zn (in mg•kg–1) released during the single batch leaching test
1 The European Slag Association. Legas status of slags. Position paper on the status of Ferrous slag, 2012
2 Shi C, Qian  J. High performance cementing materials from industrial slags—a review. Resources, Conservation and Recycling, 2000, 29(3): 195–207
https://doi.org/10.1016/S0921-3449(99)00060-9
3 Al-Jabri K S, Hisada  M, Al-Saidy A H ,  Al-Oraimi S K . Performance of high strength concrete made with copper slag as a fine aggregate. Construction & Building Materials, 2009, 23(6): 2132–2140
https://doi.org/10.1016/j.conbuildmat.2008.12.013
4 Khanzadi M, Behnood  A. Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate. Construction & Building Materials, 2009, 23(6): 2183–2188
https://doi.org/10.1016/j.conbuildmat.2008.12.005
5 Onisei S, Lesage  K, Blanpain B ,  Pontikes Y . Early age microstructural transformations of an inorganic polymer made of fayalite slag. Journal of the American Ceramic Society, 2015, 98(7): 2269–2277
https://doi.org/10.1111/jace.13548
6 Shi C, Meyer  C, Behnood A . Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 2008, 52(10): 1115–1120
https://doi.org/10.1016/j.resconrec.2008.06.008
7 Zain M F M ,  Islam M N ,  Radin S S ,  Yap S G . Cement-based solidification for the safe disposal of blasted copper slag. Cement and Concrete Composites, 2004, 26(7): 845–851
https://doi.org/10.1016/j.cemconcomp.2003.08.002
8 Davidovits J. Geopolymer Chemistry and Applications. France: Geopolymer Institute, 20 15, 3–17
9 Onisei S, Pontikes  Y, Van Gerven T ,  Angelopoulos G N ,  Velea T ,  Predica V ,  Moldovan P . Synthesis of inorganic polymers using fly ash and primary lead slag. Journal of Hazardous Materials, 2012, 205-206: 101–110
https://doi.org/10.1016/j.jhazmat.2011.12.039
10 Pontikes Y, Machiels  L, Onisei S ,  Pandelaers L ,  Geysen D ,  Jones P T ,  Blanpain B . Slags with a high Al and Fe content as precursors for inorganic polymers. Applied Clay Science, 2013, 73: 93–102
https://doi.org/10.1016/j.clay.2012.09.020
11 Perera D S, Aly  Z, Vance E R ,  Mizumo M . Immobilization of Pb in a geopolymer matrix. Journal of the American Ceramic Society, 2005, 88(9): 2586–2588
https://doi.org/10.1111/j.1551-2916.2005.00438.x
12 Hanzlicek T, Steinerova  M, Straka P . Radioactive metal isotopes stabilized in a geopolymer matrix: Determination of a leaching extract by a radiotracer method. Journal of the American Ceramic Society, 2006, 89(11): 3541–3543
https://doi.org/10.1111/j.1551-2916.2006.01024.x
13 Fernández-Jiménez A ,  Palomo A ,  Macphee D E ,  Lachowski E E . Fixing arsenic in alkali-activated cementitious matrices. Journal of the American Ceramic Society, 2005, 88(5): 1122–1126
https://doi.org/10.1111/j.1551-2916.2005.00224.x
14 Palomo A, Palacios  M. Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes: Part II. Stabilisation of chromium and lead. Cement and Concrete Research, 2003, 33(2): 289–295
https://doi.org/10.1016/S0008-8846(02)00964-X
15 Zhang Y, Sun  W, Chen Q ,  Chen L. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials, 2007, 143(1-2): 206–213
https://doi.org/10.1016/j.jhazmat.2006.09.033
16 Izquierdo M, Querol  X, Phillipart C ,  Antenucci D ,  Towler M . The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers. Journal of Hazardous Materials, 2010, 176(1-3): 623–628
https://doi.org/10.1016/j.jhazmat.2009.11.075
17 Phair J W, Van Deventer  J S J. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Minerals Engineering, 2001, 14(3): 289–304
https://doi.org/10.1016/S0892-6875(01)00002-4
18 Van Deventer J S J ,  Provis J L ,  Duxson P ,  Lukey G C . Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 2007, 139(3): 506–513
https://doi.org/10.1016/j.jhazmat.2006.02.044
19 Van Jaarsveld J G S ,  Van Deventer J S J . The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cement and Concrete Research, 1999, 29(8): 1189–1200
https://doi.org/10.1016/S0008-8846(99)00032-0
20 Tavor D, Wolfson  A, Shamaev A ,  Shvarzman A . Recycling of industrial wastewater by its immobilization in geopolymer cement. Industrial & Engineering Chemistry Research, 2007, 46(21): 6801–6805
https://doi.org/10.1021/ie0616996
21 Deja J. Immobilization of Cr6 +, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cement and Concrete Research, 2002, 32(12): 1971–1979
https://doi.org/10.1016/S0008-8846(02)00904-3
22 Quina M J, Bordado  J C M, Quinta-Ferreira  R M. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Management (New York, N.Y.), 2009, 29(9): 2483–2493
https://doi.org/10.1016/j.wasman.2009.05.012
23 Muñiz-Villarreal M S ,  Manzano-Ramírez A ,  Sampieri-Bulbarela S ,  Gasca-Tirado J ,  Reyes-Araiza J L ,  Rubio-Ávalos J C ,  Pérez-Bueno J J ,  Apatiga L M ,  Zaldivar-Cadena A ,  Amigó-Borrás V . The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Materials Letters, 2011, 65(6): 995–998
https://doi.org/10.1016/j.matlet.2010.12.049
24 Van Jaarsveld J G S ,  Van Deventer J S J ,  Schwartzman A . The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics. Minerals Engineering, 1999, 12(1): 75–91
https://doi.org/10.1016/S0892-6875(98)00121-6
25 Komnitsas K, Zaharaki  D, Bartzas G . Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Applied Clay Science, 2013, 73(0): 103–109
https://doi.org/10.1016/j.clay.2012.09.018
26 Snellings R, Machiels  L, Mertens G ,  Elsen J . Rietveld refinement strategy for qualitative phase analysis of partially amorphous zeolitized tuffaceous rocks. Geologica Belgica, 2010, 13(3): 183–196
27 Panagiotopoulou C, Kontori  E, Perraki T H ,  Kakali G . Dissolution of aluminosilicate minerals and by-products in alkaline media. Journal of Materials Science, 2007, 42(9): 2967–2973
https://doi.org/10.1007/s10853-006-0531-8
28 Environment agency NEN 7375-2004. Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. The tank test. Delft: The Netherlands Normalisation Institute, 2004
29 BS EN 12457-1:2002. Characterisation of waste—Leaching —Compliance test for leaching of granular waste materials and sludges. Part 1: One stage batch test at a liquid to solid ratio of 2 L/kg for materials with high solid content and with particle size below 4 mm (without or with size reduction), 2002
30 Allison J D, Brown  D S, Novogradac  K J. MINTEQA2/PRODEFA2. A chemical assessment model for environmental systems: Version 4.0 user’s manual. Environmental Research Laboratory Office of Research and Development, 1999
31 Gustafsson J P . Visual MINTEQ. Version 3.0: A Windows version of MINTEQA2, version 4.0. 2004
32 VLAREMA. Flemish regulation on the sustainable management of material cycles and waste. VLAREMA, 2016, 3 (in Dutch)
33 Parsons M B, Bird  D K, Einaudi  M T, Alpers  C N. Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump. California. Applied Geochemistry, 2001, 16(14): 1567–1593
https://doi.org/10.1016/S0883-2927(01)00032-4
34 Pontikes Y, Machiels  L, Onisei S ,  Pandelaers L ,  Geysen D ,  Jones P T ,  Blanpain B . Slags with a high Al and Fe content as precursors for inorganic polymers. Applied Clay Science, 2013, 73: 93–102
https://doi.org/10.1016/j.clay.2012.09.020
35 Davidovits J A . Geopolymers: Inorganic polymeric new materials. Journal of Materials Education, 1994, 16(2-3): 91–139
36 Perera D S, Cashion  J D, Blackford  M G, Zhang  Z, Vance E R . Fe speciation in geopolymers with Si/Al molar ratio of ~2. Journal of the European Ceramic Society, 2007, 27(7): 2697–2703
https://doi.org/10.1016/j.jeurceramsoc.2006.10.006
37 Bell J L. Formation of an iron-based inorganic polymer (geopolymer). In: Proceedings of Mechanical Properties and Performance of Engineering Ceramics and Composites IV. Wiley: Hoboken, 2010, 301–312
38 Chen A, Zhao  Z W, Jia  X, Long S ,  Huo G, Chen  X. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy, 2009, 97(3-4): 228–232
https://doi.org/10.1016/j.hydromet.2009.01.005
39 Puligilla S. Understanding the role of slag on geopolymer hardening and microstructural development. Dissertation for the Master Degree. Urbana: University of Illinois, 2011, 84
40 Provis J L. Modelling the formation of geopolymers. Dissertation for the Doctoral Degree. Australia: University of Melbourne, 2006, 282
41 Williams R P, Hart  R D, Van Riessen  A. Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Journal of the American Ceramic Society, 2011, 94(8): 2663–2670
https://doi.org/10.1111/j.1551-2916.2011.04410.x
42 Mihailova I, Mehandjiev  D. Characterization of fayalite from copper slags. Journal of the University of Chemical Technology and Metallurgy, 2010, 45(3): 317–326
43 Lappi S E, Smith  B, Franzen S . Infrared spectra of H216O, H218O and D2O in the liquid phase by single-pass attenuated total internal reflection spectroscopy. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(11): 2611–2619
https://doi.org/10.1016/j.saa.2003.12.042
44 Hanna R, Su  G J. Infrared absorption spectra of sodium silicate glasses from 4 to 40 microns. Journal of the American Ceramic Society, 1964, 47(12): 597–601
https://doi.org/10.1111/j.1151-2916.1964.tb13113.x
45 Gervais F, Blin  A, Massiot D ,  Coutures J P ,  Chopinet M H ,  Naudin F . Infrared reflectivity spectroscopy of silicate glasses. Journal of Non-Crystalline Solids, 1987, 89(3): 384–401
https://doi.org/10.1016/S0022-3093(87)80280-6
46 Kuenzel C, Vandeperre  L J, Donatello  S, Boccaccini A R ,  Cheeseman C . Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. Journal of the American Ceramic Society, 2012, 95(10): 3270–3277
https://doi.org/10.1111/j.1551-2916.2012.05380.x
47 Ismail I, Bernal  S A, Provis  J L, Hamdan  S, Van Deventer J S J. Drying-induced changes in the structure of alkali-activated pastes. Journal of Materials Science, 2013, 48(9): 3566–3577
https://doi.org/10.1007/s10853-013-7152-9
48 European Committee for Standardisation. EN 197-1. Norm for Cement. Part 1, 2000
49 De Groot G J . Development of a leaching method for the determination of the environmental quality of concrete. European ComissionFinal Report. EUR 17869 EN, 1997
50 Van der Sloot H A . Development of horizontally standardized leaching tests for construction materials: A material based or release based approach? Identical leaching mechanisms for different materials. Report ECN-C-04-060, 2004
51 Dell’Orso M, Mangialardi  T, Paolini A E ,  Piga L. Evaluation of the leachability of heavy metals from cement-based materials. Journal of Hazardous Materials, 2012, 227-228: 1–8
https://doi.org/10.1016/j.jhazmat.2012.04.017
[1] Leila Ouni, Ali Ramazani, Saeid Taghavi Fardood. An overview of carbon nanotubes role in heavy metals removal from wastewater[J]. Front. Chem. Sci. Eng., 2019, 13(2): 274-295.
[2] Ali SDIRI,Samir BOUAZIZ. Re-evaluation of several heavy metals removal by natural limestones[J]. Front. Chem. Sci. Eng., 2014, 8(4): 418-432.
[3] Xiaokai SONG,Zhongyi JIANG,Lin LI,Hong WU. Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability[J]. Front. Chem. Sci. Eng., 2014, 8(3): 353-361.
[4] QIAO Congzhen, LI Chengyue. Continuous reaction performances of benzene alkylation with long chain olefins catalyzed by ionic liquid[J]. Front. Chem. Sci. Eng., 2008, 2(1): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed