| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Materials sustainability for environment: Red-mud treatment  | 
  					 
  					  										
						Brajendra Mishra1( ), Sumedh Gostu2 | 
					 
															
						1. Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609-2280, USA 2. Department of Material Science and Engineering, Worcester Polytechnic Institute, Worcester, MA 01609-2280, USA | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Bayer’s process revolutionized the extraction of aluminum from the bauxite ores. However, the hydrothermal extraction of alumina is associated with the generation of a byproduct, red-mud consisting of undissolved solids composed of iron oxides, sodium alumino silicates, titania, silica and rare earth elements. The accumulation of red-mud (or bauxite residue) in the world is 30 billion metric tons produced at a rate of 125 million tons per annum (2013). Utilization of red-mud for constructional purposes, wastewater treatment, metallurgical products, and pigments are listed. Metallurgical processing efforts of red-mud to generate various value added products such as pig iron, direct reduced iron slag wool, magnetite, titania, iron carbides are presented in the article. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				red-mud processing  
																		  																																				waste management  
																		  																																				sustainability  
																		  																																				valorization  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Brajendra Mishra   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 14 April 2017  
																																														Online First Date: 27 June 2017   
																																														Issue Date: 23 August 2017
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      F Habbashi. Textbook of Hydrometallurgy. Métallurgie Extractive Québec, 1999
														     															 | 
																  
																														
															| 2 | 
															 
														      J Edward, F Frary, Z Jefferies. Aluminum and Its Production. Columbus: McGraw-Hill Book Company, Inc, 1930
														     															 | 
																  
																														
															| 3 | 
															 
														     Information from Company Websites of USGS. Alcoa. 2017
														     															 | 
																  
																														
															| 4 | 
															 
														     Bauxite Residue Management: Best Practice. World aluminum, European aluminum association, April 2013
														     															 | 
																  
																														
															| 5 | 
															 
														      A R Burkin. Production of Aluminum and Alumina. Society of Chemical Industry. Hoboken: John Wiley and Sons, 1987
														     															 | 
																  
																														
															| 6 | 
															 
														      P M Prasad, M Singh. Problems in the disposal and utilization of red muds. Banaras Metallurgist, 1997, 14-15: 127–140
														     															 | 
																  
																														
															| 7 | 
															 
														      A K Staley. An investigation into the Pyrometallurgical and electrometallurgical extraction of iron from red mud generated in the processing of bauxite ores. Dissertation for the Doctoral Degree. Colorado: Colorado School of Mines, 2002
														     															 | 
																  
																														
															| 8 | 
															 
														      S Samal, A Ray, A Bandopadhyay. Proposal for resources, utilization and processes of red mud in India: A review. International Journal of Mineral Processing, 2013, 118: 43–55 
														     														     	 
														     															     		https://doi.org/10.1016/j.minpro.2012.11.001
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      Y Pontikes, G Angelpoulos. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resources, Conservation and Recycling, 2013, 73: 53–63 
														     														     	 
														     															     		https://doi.org/10.1016/j.resconrec.2013.01.005
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      M Singh, S N Upadhyay, P M Prasad. Preparation of iron rich cements using red mud. Cement and Concrete Research, 1997, 27(7): 1037–1046 
														     														     	 
														     															     		https://doi.org/10.1016/S0008-8846(97)00101-4
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      C R Mishra, D Yadav, P S Sharma, M M Alli. Production of ordinary portland cement (OPC) from NALCO red mud. TMS (The Minerals, Metals and Materials Society). 2011, 
														     															 | 
																  
																														
															| 12 | 
															 
														      X Liu, N Zhang. Utilization of red mud in cement production: A review. Waste Management & Research, 2010, 29(10): 1053–1063 
														     														     	 
														     															     		https://doi.org/10.1177/0734242X11407653
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      Q Liu, R Xin, C Li, C Xu, J Yang. Application of red mud as a basic catalyst for biodiesel production. Journal of Environmental Sciences (China), 2013, 25(4): 823–829 
														     														     	 
														     															     		https://doi.org/10.1016/S1001-0742(12)60067-9
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      W Liang, S J Couperthwaite, G Kaur, C Yan, D W Johnstone, G J Millar. Effect of strong acids on red mud structural and fluoride adsorption properties. Journal of Colloid and Interface Science, 2014, 423: 158–165 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2014.02.019
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      Z Liu, H Li. Metallurgical process for valuable elements recovery from red mud: A review. Hydrometallurgy, 2015, 155: 29–43 
														     														     	 
														     															     		https://doi.org/10.1016/j.hydromet.2015.03.018
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      K Hammond, B Mishra, D Apelian, B Blanpain. CR3 Communication: Red mud — a resource or a waste? Journal of the Minerals Metals & Materials Society, 2013, 65(3): 340–341 
														     														     	 
														     															     		https://doi.org/10.1007/s11837-013-0560-0
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      W Liu, J Yang, B Xiao. Review on treatment and utilization of bauxite residues in China. International Journal of Mineral Processing, 2009, 93(3-4): 220–231 
														     														     	 
														     															     		https://doi.org/10.1016/j.minpro.2009.08.005
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      W Liu, S Sun, L Zhang, S Jahanshahi, J Yang. Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na and Fe. Minerals Engineering, 2012, 39: 213–218 
														     														     	 
														     															     		https://doi.org/10.1016/j.mineng.2012.05.021
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      L Zhong, Y Zhang, Z Yi. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process. Journal of Hazardous Materials, 2009, 172(2-3): 1629–1634 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2009.08.036
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      H Li, J Hui, C Wang, W Bao, Z Sun. Removal of sodium (Na2O) from alumina extracted fly ash by a mild hydrothermal process. Hydrometallurgy, 2015, 153: 1–5 
														     														     	 
														     															     		https://doi.org/10.1016/j.hydromet.2015.02.001
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      P Vachon, R D Tyagi, J C Auclair, K J Wilkinson. Chemical and biological leaching of aluminum from red mud. Environmental Science & Technology, 1994, 28(1): 26–30 
														     														     	 
														     															     		https://doi.org/10.1021/es00050a005
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      W J Bruckard, C M Calle, R H Davidson, A M Glenn, S Jahanshahi, M A Somerville, G J Sparrow, L Zhang. Smelting of bauxite residue to form a soluble sodium aluminum silicate phase to recover alumina and soda. Mineral Processing and Extractive Metallurgy Review, 2010, 119(1): 18–26 
														     														     	 
														     															     		https://doi.org/10.1179/037195509X12518785461760
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      X Li, W Xiao, W Liu, G Liu, Z Peng, Q Zhou, T Qi. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Transactions of Nonferrous Metallurgical Society, 2009, 19(5): 1342–1347 
														     														     	 
														     															     		https://doi.org/10.1016/S1003-6326(08)60447-1
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      Q S Zhou, K S Fan, X B Li, Z H Peng, G H Liu. Alumina recovery from red mud with high iron by sintering process . Journal of Central South University Science and Technology, 2008, 39(1): 92–97 (in Chinese)
														     															 | 
																  
																														
															| 25 | 
															 
														      N V Raspopov, V P Korneev, V Averin, Y A Lainer, D V Zinoneev, V G Dyubanov. Reduction of iron oxides during the Pyrometallurgical processing or red mud. Russian Metallurgy (Metally), 2013, 1(1): 33–37 
														     														     	 
														     															     		https://doi.org/10.1134/S0036029513010114
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      G Li, M Liu, M Rao, T Jiang, J Zhuang, Y Zhang. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Journal of Hazardous Materials, 2014, 280: 774–780 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2014.09.005
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      E Jamieson, A Jones, D Cooling, N Stockton. Magnetic separation of red sand to produce value. Minerals Engineering, 2006, 19(15): 1603–1605 
														     														     	 
														     															     		https://doi.org/10.1016/j.mineng.2006.08.002
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      D Zhu, T Jun, J Chun, P Zhen. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. Journal of Iron and Steel Research International, 2012, 19(8): 1–5
														     															 | 
																  
																														
															| 29 | 
															 
														      W Liu, J Yang, B Xiao. Application of Bayer red mud for iron recovery and building material production from aluminosilicate residues. Journal of Hazardous Materials, 2009, 161(1): 474–478 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2008.03.122
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      L Piga, F Pochetti, L Stoppa. Recovery of metals from red mud generated during alumina production. JOM, 1993, 45(11): 54–59 
														     														     	 
														     															     		https://doi.org/10.1007/BF03222490
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      W A Stickney, M O Butler, J E Mauser, O C Fursman. Utilization of red mud residues from alumina production. Washington: U.S. Department of Interior, Bureau of Mines, DC, 1970
														     															 | 
																  
																														
															| 32 | 
															 
														      R Kumar, J P Srivastava. Premchand. Utilization of iron values of red mud for metallurgical applications. Environmental and Waste Management, 1998, 108–119
														     															 | 
																  
																														
															| 33 | 
															 
														      K Jayasankar, P K Ray, A K Chaubey, A Padhi, B K Satapathy, P S Mukherjee. Production of pig iron from red mud waste fines using thermal plasma technology. International Journal of Minerals Metallurgy and Materials, 2012, 19(8): 679–684 
														     														     	 
														     															     		https://doi.org/10.1007/s12613-012-0613-3
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      C Laguna, F González, C García-Balboa, A Ballester, M L Blázquez, J A Muñoz. Bioreduction of iron compounds as a possible clean environmental alternative for metal recovery. Minerals Engineering, 2011, 24(1): 10–18 
														     														     	 
														     															     		https://doi.org/10.1016/j.mineng.2010.08.026
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      L Zhong, Y Zhang, Y Zhang. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process. Journal of Hazardous Materials, 2009, 172(2-3): 1629–1634 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2009.08.036
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      Y Guo, J Guo, H Xu, K Zhao, X Shi. Nuggests production by direct reduction of high iron red mud. Journal of Iron and Steel research, International, 2013, 20(5): 24–27
														     															 | 
																  
																														
															| 37 | 
															 
														      M Samouhos, M Taxiarchou, P Tsakiridis, K Potiriadis. Greek red mud residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process. Journal of Hazardous Materials, 2013, 254-255: 193–205 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2013.03.059
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      G Li, M Liu, M Rao, T Jiang, J Zhuang, Y Zhang. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Journal of Hazardous Materials, 2014, 280: 774–780 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2014.09.005
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      O A Teplov, Y U Lainer. Rate of reduction of the iron oxides in red mud by hydrogen and converted gas. Russian Metallurgy (Metally), 2013, 1: 32–40
														     															 | 
																  
																														
															| 40 | 
															 
														      R Caupain. Low-temperature gas-phase carbidization of iron-bearing constituents in red mud. Dissertation for the Master Degree. Colorado: Colorado School of Mines, 2004
														     															 | 
																  
																														
															| 41 | 
															 
														      K H Strausta. DD Patent , 120185-A, 1976-06-05
														     															 | 
																  
																														
															| 42 | 
															 
														      A W Vereinigte. FR Patent, 2.117.930-A, 1971-12-07
														     															 | 
																  
																														
															| 43 | 
															 
														      J Wang, P Zhao. Method of dealkalizing red mud and recovering aluminum and iron. Google patents, 2013
														     															 | 
																  
																														
															| 44 | 
															 
														      S Agatzini-Leonardou, P Oustadakis, P E Tsakiridis, C Markopoulos. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure. Journal of Hazardous Materials, 2008, 157(2-3): 579–586 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2008.01.054
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      E Erçağ, R Apak. Furnace smelting and extractive metallurgy of red mud: Recovery of TiO2, Al2O3 and pig iron. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1997, 70(3): 241–246 
														     														     	 
														     															     		https://doi.org/10.1002/(SICI)1097-4660(199711)70:3<241::AID-JCTB769>3.0.CO;2-X
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      S Mehta, S Patel. Recovery of titania from the bauxite sludge. Journal of the American Chemical Society, 1951, 73(1): 226–227 
														     														     	 
														     															     		https://doi.org/10.1021/ja01145a076
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      Q Xiang, X Liang, M Schlesinger, J Watson. Low-temperature reduction of ferric iron in red mud. TMS (The Minerals, Metals and Materials Society). 2001
														     															 | 
																  
																														
															| 48 | 
															 
														      Y Liu, B Zhao, Y Tang, P Wan, Y Chen, Z Lv. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite. Thermochimica Acta, 2014, 588: 11–15 
														     														     	 
														     															     		https://doi.org/10.1016/j.tca.2014.04.027
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														      K Binnemans, P T Jones, B Blanpain, T P Gerven, Y Pontikes. Towards zero waste valorization of rare earth-containing-industrial process residues: A critical review. Journal of Cleaner Production, 2015, 99: 17–38 
														     														     	 
														     															     		https://doi.org/10.1016/j.jclepro.2015.02.089
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														      A S Wagh, W R Pinnock. Occurrence of scandium and rare earth elements in Jamaican Bauxite waste. Economic Geology and the Bulletin of the Society of Economic Geologists, 1987, 82(3): 757–761 
														     														     	 
														     															     		https://doi.org/10.2113/gsecongeo.82.3.757
														     															     															     															 | 
																  
																														
															| 51 | 
															 
														      C R Borra, Y Pontikes, K Binnemans, T V Gerven. Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 2015, 76: 20–27 
														     														     	 
														     															     		https://doi.org/10.1016/j.mineng.2015.01.005
														     															     															     															 | 
																  
																														
															| 52 | 
															 
														      W Wang, C Y Cheng. Separation and purification of scandium by solvent extraction and related technologies: A review. Journal of Chemistry and Biotechnology, 2011, 86(10): 1237–1246 
														     														     	 
														     															     		https://doi.org/10.1002/jctb.2655
														     															     															     															 | 
																  
																														
															| 53 | 
															 
														      S P Yatsenko, I N Pyagai. Red mud pulp carbonization with scandium extraction during alumina production. Theoretical Foundations of Chemical Engineering, 2010, 44(4): 563–568 
														     														     	 
														     															     		https://doi.org/10.1134/S0040579510040366
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |