|
|
Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation |
Yuxia Jiang1,2, Donge Wang1, Zhendong Pan1, Huaijun Ma1, Min Li1,2, Jiahe Li1,2, Anda Zheng1,2, Guang Lv1,2, Zhijian Tian1,3( ) |
1. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China |
|
|
Abstract Flower-like intercalated MoS2 nanomaterials have been successfully synthesized via a microemulsion-mediated hydrothermal (MMH) method, and characterized by X-ray diffraction, Raman spectroscopy, element analysis, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy in detail. Their catalytic performance for anthracene hydrogenation was evaluated using a slurry-bed batch reactor with an initial hydrogen pressure of 80 bar at 350 °C for 4 h. The intercalated MoS2 nanoflowers synthesized from Na2MoO4 (MoS2-S) and H2MoO4 (MoS2-A) as molybdenum precursors have diameters of about 150 and 50 nm, respectively. MoS2 nanosheets on MoS2-S and MoS2-A possess stacking layer numbers of 5–10 and 2–5, and slab lengths of about 15 and 10 nm, respectively. The interlayer distances of MoS2-S and MoS2-A are both enlarged from 0.62 nm to about 0.95 nm due to the intercalation of NH4+ and surfactant molecules. The MoS2 nanoflowers have high catalytic activities for anthracene hydrogenation. The selectivity for octahydroanthracene, a deeply hydrogenated product, over MoS2-A is 89.8%, which is 31.0 times higher than that over commercial bulk MoS2. Fully hydrogenated product (perhydroanthracene) was also detected over MoS2 nanoflowers with a selectivity of 3.7%. The enhanced hydrogenation activities of MoS2 nanoflowers can be ascribed to the high exposure of catalytic active sites, resulting from the smaller particle size, fewer stacking layer, shorter slab length and enlarged interlayer distance of MoS2 nanoflowers compared with commercial bulk MoS2. In addition, a possible growth mechanism of MoS2 nanoflowers synthesized via the MMH method was proposed.
|
Keywords
microemulsion
intercalated MoS2
catalytic hydrogenation
active sites
|
Corresponding Author(s):
Zhijian Tian
|
Just Accepted Date: 17 August 2017
Online First Date: 31 October 2017
Issue Date: 26 February 2018
|
|
1 |
Hershfinkel M, Gheber L A, Volterra V, Hutchison J L, Margulis L, Tenne R. Nested polyhedra of MX2 (M= W, Mo; X= S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. Journal of the American Chemical Society, 1994, 116(5): 1914–1917
https://doi.org/10.1021/ja00084a035
|
2 |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275
https://doi.org/10.1038/nchem.1589
|
3 |
Bano S, Ahmad S, Woo S, Saleem F. Heavy oil hydroprocessing: Effect of nanostructured morphologies of MoS2 as catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(2): 473–487
https://doi.org/10.1007/s11144-014-0822-z
|
4 |
Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z, Bao X. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016, 11(3): 218–230
https://doi.org/10.1038/nnano.2015.340
|
5 |
Daage M, Chianelli R R. Structure-function relations in molybdenum sulfide catalysts—the rim-edge model. Journal of Catalysis, 1994, 149(2): 414–427
https://doi.org/10.1006/jcat.1994.1308
|
6 |
Zhang N, Li H, Yu K, Zhu Z. Differently structured MoS2 for the hydrogen production application and a mechanism investigation. Journal of Alloys and Compounds, 2016, 685: 65–69
https://doi.org/10.1016/j.jallcom.2016.05.228
|
7 |
Iwata Y, Araki Y, Honna K, Miki Y, Sato K, Shimada H. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils. Catalysis Today, 2001, 65(2): 335–341
https://doi.org/10.1016/S0920-5861(00)00554-X
|
8 |
Li Z, He J, Wang H, Wang B, Ma X. Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3. Frontiers of Chemical Science and Engineering, 2015, 9(1): 33–39
https://doi.org/10.1007/s11705-014-1446-6
|
9 |
Salvatore G A, Münzenrieder N, Barraud C, Petti L, Zysset C, Büthe L, Ensslin K, Tröster G. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano, 2013, 7(10): 8809–8815
https://doi.org/10.1021/nn403248y
|
10 |
Zheng J, Zhang H, Dong S, Liu Y, Tai Nai C, Suk Shin H, Young Jeong H, Liu B, Ping Loh K. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications, 2014, 5: 2995
https://doi.org/10.1038/ncomms3995
|
11 |
Nath M, Govindaraj A, Rao C N R. Simple synthesis of MoS2 and WS2 nanotubes. Advanced Materials, 2001, 13(4): 283–286
https://doi.org/10.1002/1521-4095(200102)13:4<283::AID-ADMA283>3.0.CO;2-H
|
12 |
Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325
https://doi.org/10.1002/adma.201104798
|
13 |
Sheng B, Liu J, Li Z, Wang M, Zhu K, Qiu J, Wang J. Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis. Materials Letters, 2015, 144: 153–156
https://doi.org/10.1016/j.matlet.2015.01.056
|
14 |
Liu M, Li X, Xu Z, Li B, Chen L, Shan N. Synthesis of chain-like MoS2 nanoparticles in W/O reverse microemulsion and application in photocatalysis. Chinese Science Bulletin, 2012, 57(30): 3862–3866
https://doi.org/10.1007/s11434-012-5339-0
|
15 |
Gong H, Zheng F, Li Z, Li Y, Hu P, Gong Y, Song S, Zhan F, Zhen Q. Hydrothermal preparation of MoS2 nanoflake arrays on Cu foil with enhanced supercapacitive property. Electrochimica Acta, 2017, 227: 101–109
https://doi.org/10.1016/j.electacta.2017.01.012
|
16 |
Ye L, Wu C, Guo W, Xie Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: One-step synthesis and their electrochemical hydrogen storage properties. Chemical Communications, 2006, 45(45): 4738–4740
https://doi.org/10.1039/b610601c
|
17 |
Lu X, Lin Y, Dong H, Dai W, Chen X, Qu X, Zhang X. One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Scientific Reports, 2017, 7: 42309
https://doi.org/10.1038/srep42309
|
18 |
Akram H, Mateos-Pedrero C, Gallegos-Suárez E, Guerrero-Ruíz A, Chafik T, Rodríguez-Ramos I. Effect of electrolytes nature and concentration on the morphology and structure of MoS2 nanomaterials prepared using one-pot solvothermal method. Applied Surface Science, 2014, 307(2): 319–326
https://doi.org/10.1016/j.apsusc.2014.04.034
|
19 |
Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y, Tian Z, Lu A. Surfactant-assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation. Chinese Journal of Catalysis, 2017, 38(3): 597–606
https://doi.org/10.1016/S1872-2067(17)62779-7
|
20 |
Yan Y, Xia B, Ge X, Liu Z, Wang J, Wang X. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Applied Materials & Interfaces, 2013, 5(24): 12794–12798
https://doi.org/10.1021/am404843b
|
21 |
Chikan V, Kelley D F. Size-dependent spectroscopy of MoS2 nanoclusters. Journal of Physical Chemistry B, 2002, 106(15): 3794–3804
https://doi.org/10.1021/jp011898x
|
22 |
Yu H, Liu Y, Brock S L. Synthesis of discrete and dispersible MoS2 nanocrystals. Inorganic Chemistry, 2008, 47(5): 1428–1434
https://doi.org/10.1021/ic701020s
|
23 |
Xiong Y, Xie Y, Li Z, Li X, Zhang R. Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres. Chemical Physics Letters, 2003, 382(1-2): 180–185
https://doi.org/10.1016/j.cplett.2003.10.063
|
24 |
Marchand K, Tarret M, Lechaire J, Normand L, Kasztelan S, Cseri T. Investigation of AOT-based microemulsions for the controlled synthesis of MoSx nanoparticles: An electron microscopy study. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2003, 214(1): 239–248
https://doi.org/10.1016/S0927-7757(02)00412-0
|
25 |
Ganguli A K, Ganguly A, Vaidya S. Microemulsion-based synthesis of nanocrystalline materials. Chemical Society Reviews, 2010, 39(2): 474–485
https://doi.org/10.1039/B814613F
|
26 |
Wu M, Long J, Huang A, Luo Y, Feng S, Xu R. Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir, 1999, 15(26): 8822–8825
https://doi.org/10.1021/la990514f
|
27 |
Yang L, Liu L, Xiao D, Zhu J. Preparation and characterization of ZnSe nanocrystals by a microemulsion-mediated method. Materials Letters, 2012, 72: 113–115
https://doi.org/10.1016/j.matlet.2011.12.064
|
28 |
Yin J, Lu X, Dong Q. The experiment and theory studies of silver substituting cadmium in CdS quantum dots. Journal of Alloys and Compounds, 2017, 695: 1301–1306
https://doi.org/10.1016/j.jallcom.2016.10.260
|
29 |
Gao M R, Chan M K Y, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6: 7493
https://doi.org/10.1038/ncomms8493
|
30 |
Li J, Wang D, Ma H, Pan Z, Jiang Y, Li M, Tian Z. Ionic liquid assisted hydrothermal synthesis of hollow core/shell MoS2 microspheres. Materials Letters, 2015, 160: 550–554
https://doi.org/10.1016/j.matlet.2015.08.049
|
31 |
Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y, Tian Z. Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. RSC Advances, 2016, 6(75): 71534–71542
https://doi.org/10.1039/C6RA16084K
|
32 |
Wu Z, Tang C, Zhou P, Liu Z, Xu Y, Wang D, Fang B. Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS2. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(24): 13050–13056
https://doi.org/10.1039/C5TA02010G
|
33 |
Anto Jeffery A, Nethravathi C, Rajamathi M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M= Mo,W). Journal of Physical Chemistry C, 2014, 118(2): 1386–1396
https://doi.org/10.1021/jp410918c
|
34 |
Matusinovic Z, Shukla R, Manias E, Hogshead C G, Wilkie C A. Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polymer Degradation & Stability, 2012, 97(12): 2481–2486
https://doi.org/10.1016/j.polymdegradstab.2012.07.004
|
35 |
Frey G L, Tenne R, Matthews M J, Dresselhaus M S, Dresselhaus G. Raman and resonance Raman investigation of MoS2 nanoparticles. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(4): 2883–2892
https://doi.org/10.1103/PhysRevB.60.2883
|
36 |
Wang Z, Ma L, Chen W, Huang G, Chen D, Wang L, Lee J Y. Facile synthesis of MoS2/graphene composites: Effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances, 2013, 3(44): 21675–21684
https://doi.org/10.1039/c3ra43699c
|
37 |
Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition, 2010, 49(24): 4059–4062 doi:10.1002/anie.201000009
|
38 |
Koroteev V O, Bulusheva L G, Asanov I P, Shlyakhova E V, Vyalikh D V, Okotrub A V. Charge transfer in the MoS2/Carbon nanotube composite. Journal of Physical Chemistry C, 2011, 115(43): 21199–21204
https://doi.org/10.1021/jp205939e
|
39 |
Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695–2700
https://doi.org/10.1021/nn1003937
|
40 |
Nogueira A, Znaiguia R, Uzio D, Afanasiev P, Berhault G. Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: Synthesis and HDS catalytic properties. Applied Catalysis A, General, 2012, 429–430: 92–105
https://doi.org/10.1016/j.apcata.2012.04.013
|
41 |
Iwata Y, Sato K, Yoneda T, Miki Y, Sugimoto Y, Nishijima A, Shimada H. Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods. Catalysis Today, 1998, 45(1-4): 353–359
https://doi.org/10.1016/S0920-5861(98)00262-4
|
42 |
Bellussi G, Rispoli G, Molinari D, Landoni A, Pollesel P, Panariti N, Millini R, Montanari E. The role of MoS2 nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates. Catalysis Science & Technology, 2013, 3(1): 176–182
https://doi.org/10.1039/C2CY20448G
|
43 |
Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, Hu Y, Gui Z. Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): Structural characteristics and markedly enhanced properties. RSC Advances, 2012, 2(31): 11695–11703
https://doi.org/10.1039/c2ra21719h
|
44 |
Zhou K, Liu J, Wang B, Zhang Q, Shi Y, Jiang S, Hu Y, Gui Z. Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Materials Letters, 2014, 126: 159–161
https://doi.org/10.1016/j.matlet.2014.04.040
|
45 |
Barzegar-Bafrooei H, Ebadzadeh T, Tazike M. A survey on dispersion mechanisms of multi-walled carbon nanotubes in an aqueous media by UV-Vis, raman spectroscopy, TGA, and FTIR. Journal of Dispersion Science and Technology, 2012, 33(7): 955–959
https://doi.org/10.1080/01932691.2011.590420
|
46 |
Boyjoo Y, Wang M, Pareek V K, Liu J, Jaroniec M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chemical Society Reviews, 2016, 45(21): 6013–6047
https://doi.org/10.1039/C6CS00060F
|
47 |
Yang T, Ling H, Lamonier J F, Jaroniec M, Huang J, Monteiro M J, Liu J. A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. NPG Asia Materials, 2016, 8(2): e240
https://doi.org/10.1038/am.2015.145
|
48 |
Pinilla J L, Purón H, Torres D, Suelves I, Millan M. Ni-MoS2 supported on carbon nanofibers as hydrogenation catalysts: Effect of support functionalisation. Carbon, 2015, 81: 574–586
https://doi.org/10.1016/j.carbon.2014.09.092
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|