Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 43-49    https://doi.org/10.1007/s11705-017-1679-2
RESEARCH ARTICLE
Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3
Zhao Peng1, Li-Hua Chen1(), Ming-Hui Sun1, Pan Wu1, Chang Cai1, Zhao Deng1, Yu Li1, Wei-Hong Zheng2, Bao-Lian Su1,3,4
1. State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
3. Laboratory of Inorganic Materials Chemistry, Univernisity of Namur, Namur B-5000, Belgium
4. Clare Hall, University of Cambridge, Cambridge, CB2 1EW, UK
 Download: PDF(411 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study described a template-free method for the synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO2 based catalysts was also investigated for the selective reduction of NO with NH3. The results show that the catalytic performance of TiO2 based catalysts was improved greatly after Mn doping. Meanwhile, the Mn-TiO2 catalyst with the hierarchically macro-mesoporous architecture has a better catalytic activity than that without such an architecture.

Keywords titania      hierarchically macro-mesoporous structure      Mn-doping      selective catalytic reduction     
Corresponding Author(s): Li-Hua Chen,Wei-Hong Zheng,Bao-Lian Su   
Just Accepted Date: 17 August 2017   Online First Date: 31 October 2017    Issue Date: 26 February 2018
 Cite this article:   
Zhao Peng,Li-Hua Chen,Ming-Hui Sun, et al. Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3[J]. Front. Chem. Sci. Eng., 2018, 12(1): 43-49.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1679-2
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/43
Fig.1  SEM images of (a, b) hierarchically macro-mesoporous TiO2 and (c, d) hierarchically macro-mesoporous Mn-TiO2-0.15
Fig.2  (a) TEM image, (b) HRTEM micrographs, and (c?f ) EDS mapping of Mn-TiO2-0.15
Fig.3  XRD patterns of Mn-TiO2 samples with different molar ratios of Mn to Ti. (A) Pure hierarchically maco-mesoporous TiO2; (B) Mn-TiO2-0.05; (C) Mn-TiO2-0.1; (D) Mn-TiO2-0.15; (E) Mn-TiO2-0.2; (F) Mn-TiO2-0.25; (G) Mn-TiO2-0.3; (H) Con-Mn-TiO2-0.15
SampleParticle size of MnOx by XRD /nmSBET/(m2·g−1)Pore volume/(cm3·g−1)Average pore size
/nm
Mn-TiO2–0 (Pure TiO2)?33.50.1412.0
Mn-TiO2–0.05?53.20.177.7
Mn-TiO2–0.1?67.10.187.6
Mn-TiO2–0.15?73.10.197.0
Mn-TiO2–0.211.1100.20.248.0
Mn-TiO2–0.2514.380.20.228.1
Mn-TiO2–0.317.354.50.219.3
Con-Mn-TiO2–0.15?67.40.2210.3
Tab.1  Porous structure parameters of Mn-TiO2x catalysts
Fig.4  (a) N2 adsorption-desorption isotherms and (b) the corresponding size distribution curves of the Mn-TiO2 samples. (A) Mn-TiO2-0; (B) Mn-TiO2-0.05; (C) Mn-TiO2-0.1; (D) Mn-TiO2-0.15; (E): Mn-TiO2-0.2; (F) Mn-TiO2-0.25; (G) Mn-TiO2-0.3
Fig.5  XPS spectra of Mn-TiO2–0.15. (a) Full; (b) Mn 2p
Fig.6  Catalytic activity measurements for the NO conversion over Mn-TiO2-x
1 Fu M F, Li C T, Lu P, Qu L, Zhang M Y, Zhou Y, Yu M G, Fang Y. A review on selective catalytic reduction of NOx by supported catalysts at 100‒300 °C-catalysts, mechanism, kinetics. Catalysis Science & Technology, 2014, 4(1): 14–25
https://doi.org/10.1039/C3CY00414G
2 Xiong S C, Xiao X, Liao Y, Dang H, Shan W P, Yang S J. Global kinetic study of NO reduction by NH3 over V2O5-WO3/TiO2: Relationship between the SCR performance and the key factors. Industrial & Engineering Chemistry Research, 2015, 54(44): 11011–11023
https://doi.org/10.1021/acs.iecr.5b03044
3 Lietti L, Alemany J L, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F. Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia. Catalysis Today, 1996, 29(1-4): 143–148
https://doi.org/10.1016/0920-5861(95)00250-2
4 Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F. Characterization and reactivity of V2O5-MoO3/TiO2 De-NOx SCR catalysts. Journal of Catalysis, 1999, 187(2): 419–435
https://doi.org/10.1006/jcat.1999.2603
5 Buscaa G, Liettib L, Ramisa G, Bertic F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 1998, 18(1): 1–36
https://doi.org/10.1016/S0926-3373(98)00040-X
6 Heck R M. Catalytic abatement of nitrogen oxides–stationary applications. Catalysis Today, 1999, 53(4): 519–523
https://doi.org/10.1016/S0920-5861(99)00139-X
7 Carja G, Kameshima Y, Okada K, Madhusoodana C D. Mn-Ce/ZSM-5 as a new superior catalyst for NO reduction with NH3. Applied Catalysis B: Environmental, 2007, 73(1-2): 60–64
https://doi.org/10.1016/j.apcatb.2006.06.003
8 Tang X L, Hao J M, Yi H H, Li J H. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today, 2007, 126(3): 406–411
https://doi.org/10.1016/j.cattod.2007.06.013
9 Went G T, Leu L J, Rosin R R, Bell A T. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3. Journal of Catalysis, 1992, 134(2): 492–505
https://doi.org/10.1016/0021-9517(92)90337-H
10 Went G T, Leu L J, Bell A T. Quantitative structural analysis of dispersed vanadia species in TiO2(anatase)-supported V2O5. Journal of Catalysis, 1992, 134(2): 479–491
https://doi.org/10.1016/0021-9517(92)90336-G
11 Alemany L J, Berti F, Busca G, Ramis G, Robba D, Toledo G P, Trombetta M. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts. Applied Catalysis B: Environmental, 1996, 10(4): 299–311
https://doi.org/10.1016/S0926-3373(96)00032-X
12 Chen J P, Yang R T. Selective catalytic reduction of NO with NH3 on SO42‒/TiO2 superacid catalyst. Journal of Catalysis, 1993, 139(1): 277–288
https://doi.org/10.1006/jcat.1993.1023
13 Saur O, Bensitel M, Mohammed S, Lavalley J C, Tripp C P, Morrow B A. The structure and stability of sulfated alumina and titania. Journal of Catalysis, 1986, 99(1): 104–110
https://doi.org/10.1016/0021-9517(86)90203-4
14 Wallin M, Forser S, Thormählen P, Skoglungh M. Screening of TiO2-supported catalysts for selective NOx reduction with ammonia. Industrial & Engineering Chemistry Research, 2004, 43(24): 7723–7731
https://doi.org/10.1021/ie049695t
15 Kijlstra W S, Brands D S, Poels E K, Bliek A. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. Journal of Catalysis, 1997, 171(1): 208–218
https://doi.org/10.1006/jcat.1997.1788
16 Kim Y J, Kwon H J, Nam I, Choung J W, Kil J K, Kim H, Cha M, Yeo G K. High deNOx performance of Mn/TiO2 catalyst by NH3. Catalysis Today, 2010, 151(3): 244–250
https://doi.org/10.1016/j.cattod.2010.02.074
17 Wu Z B, Jiang B Q, Liu Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 2008, 79(4): 347–355
https://doi.org/10.1016/j.apcatb.2007.09.039
18 Jiang B Q, Liu Y, Wu Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. Journal of Hazardous Materials, 2009, 162(2-3): 1249–1254
https://doi.org/10.1016/j.jhazmat.2008.06.013
19 Thirupathi B, Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, 2012, 288: 74–83
https://doi.org/10.1016/j.jcat.2012.01.003
20 Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuang Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45(12): 3479–3563
https://doi.org/10.1039/C6CS00135A
21 Huang J H, Tong Z Q, Huang Y, Zhang J F. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental, 2008, 78(3): 309–314
https://doi.org/10.1016/j.apcatb.2007.09.031
22 Yu J, Guo F, Wang Y L, Zhu J H, Liu Y Y, Su F B, Gao S Q, Xu G W. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B: Environmental, 2010, 95(1): 160–168
https://doi.org/10.1016/j.apcatb.2009.12.023
23 Shi Y N, Chen S, Sun H, Shu Y, Quan X. Low-temperature selective catalytic reduction of NOx with NH3 over hierarchically macro-mesoporous  Mn/TiO2. Catalysis  Communications,  2013, 42: 10–13
https://doi.org/10.1016/j.catcom.2013.07.036
24 Fang C, Shi L Y, Li H R, Huang L, Zhang J P, Zhang D S. Creating hierarchically macro-/mesoporous Sn/CeO2 for the selective catalytic reduction of NO with NH3. RSC Advances, 2016, 6(82): 78727–78736
https://doi.org/10.1039/C6RA18339E
25 Zhang J F, Huang Y, Chen X. Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica. Journal of Natural Gas Chemistry, 2008, 17(3): 273–277
https://doi.org/10.1016/S1003-9953(08)60063-8
26 Schill L, Putluru S, Fehrmann R, Jensen A D. Low-temperature NH3-SCR of NO on mesoporous Mn0.6Fe0.4/TiO2 prepared by a hydrothermal method. Catalysis Letters, 2014, 144(3): 395–402
https://doi.org/10.1007/s10562-013-1176-2
27 Zhang L, Zhang D S, Zhang J P, Cai S X, Fang C, Huang L, Li H R, Gao R  H, Shi  L  Y. Design  of  meso-TiO2@MnOx-CeOx/CNTs with a  core-shell  structure  as DeNOx  catalysts:  Promotion  of  activity, stability and  SO2-tolerance. Nanoscale,  2013,  5(20):  9821– 9829
https://doi.org/10.1039/c3nr03150k
28 Catillon-Mucherie S, Ammari F, Krafft J, Lauron-Pernot H, Touroude R, Louis C. Preparation of coimpregnated Cu-Zn/SiO2 catalysts: Influence of the drying step on metallic particle size and on Cu0‒ZnII interactions. Journal of Physical Chemistry C, 2007, 111(31): 11619–11626
https://doi.org/10.1021/jp0718956
29 Monshi A, Foroughi M R, Monshi M R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2(3): 154–160
https://doi.org/10.4236/wjnse.2012.23020
30 Blin J, Léonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewandte Chemie, 2003, 42(25): 2872–2875
https://doi.org/10.1002/anie.200250816
31 Deng W H, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65
https://doi.org/10.1002/adfm.200390007
32 Dapsens P Y, Hakim S H, Su B L, Shanks B H. Direct observation of macropore self-formation in hierarchically structured metal oxides. Chemical Communications, 2010, 46(47): 8980–8982
https://doi.org/10.1039/c0cc02684k
33 Collins A, Carriazo D, Davis S A, Mann S. Spontaneous template-free assembly of ordered macroporous titania. Chemical Communications, 2004, 5(5): 568–569
https://doi.org/10.1039/b315018f
34 Pappas D K, Boningari T, Boolcchand P, Smirniotis P G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3. Journal of Catalysis, 2016, 334: 1–13
https://doi.org/10.1016/j.jcat.2015.11.013
35 Smirniotis P G, Sreekanth P M, Peña D A, Jenkins R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 2006, 45(19): 6436–6443
https://doi.org/10.1021/ie060484t
36 Choi H J, Kim S S, Hong S C. Improving the activity of Mn/TiO2 catalysts through control of the pH and valence state of Mn during their preparation. Journal of the Air & Waste Management Association, 2012, 62(3): 362–369
https://doi.org/10.1080/10473289.2011.653515
37 Kang M, Yeon T H, Park E D, Yie J E, Kim J M. Novel MnOx catalysts for NO reduction at low temperature with ammonia. Catalysis Letters, 2006, 106(1): 77–80
https://doi.org/10.1007/s10562-005-9194-3
38 Boningari T, Ettireddy P R, Somogyvari A, Liu Y, Vorontsov A, McDonald C A, Smirniotis P G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis, 2015, 325: 145–155
https://doi.org/10.1016/j.jcat.2015.03.002
[1] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[2] Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen. Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Front. Chem. Sci. Eng., 2017, 11(4): 594-602.
[3] T. A. LASHEEN. Sulfate digestion process for high purity TiO2 from titania slag[J]. Front Chem Eng Chin, 2009, 3(2): 155-160.
[4] YANG Zehui, OU Encai, WANG Yunan, PENG Li, WANG Jiaqiang, YIN Lihui. Transition metal doped mesoporous titania with a crystalline framework as catalysts for oxidation of -bromotoluene to -bromobenzaldehyde[J]. Front. Chem. Sci. Eng., 2008, 2(3): 296-300.
[5] ZHANG Gaojie, WU Jinming, LIU Shaoguang, YAN Mi. Fabrication of titania thin film with composite nanostructure and its ability to photodegrade rhodamine B in water[J]. Front. Chem. Sci. Eng., 2008, 2(1): 44-48.
[6] XIAO Xinyan, ZHANG Huiping, CHEN Huanqin, LIAO Dongliang. Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange degradation[J]. Front. Chem. Sci. Eng., 2007, 1(2): 178-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed