Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 77-82    https://doi.org/10.1007/s11705-017-1684-5
RESEARCH ARTICLE
High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process
Dali Cai, Yu Cui, Zhao Jia, Yao Wang, Fei Wei()
Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(250 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The methanol-to-olefin (MTO) process has attracted much attention and many problems including lifetime and selectivity of light olefins have all been connected to the diffusion problems in zeolite crystals. However, a quantitative study of diffusion problems in SAPO-34 zeolites is lacking. In this paper, we performed a high-precision diffusion measurement of the diffusion behavior of ethane and propane, which represent ethylene and propylene respectively, over SAPO-34. The diffusions of ethane and propane over fresh and coked SAPO-34 zeolites with different crystal sizes were carefully studied. Ethane and propane show different diffusion behavior in SAPO-34. The diffusion of ethane is almost not influenced by the crystal size and coke percentage, whereas that of propane is strongly affected. A slower diffusion velocity was observed in bigger crystals, and the diffusion velocity decline significantly with the coke percentage increasing. The diffusion coefficient was calculated with both the internal and surface diffusion models, and the results show that the surface diffusion plays a key role in the diffusion process of both ethane and propane. We believe that this work would be helpful for understanding the diffusion of different molecules in SAPO-34 zeolites, and may lay the foundation of MTO research.

Keywords diffusion measurement      methanol-to-olefin process     
Corresponding Author(s): Fei Wei   
Just Accepted Date: 25 September 2017   Online First Date: 09 January 2018    Issue Date: 26 February 2018
 Cite this article:   
Dali Cai,Yu Cui,Zhao Jia, et al. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process[J]. Front. Chem. Sci. Eng., 2018, 12(1): 77-82.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1684-5
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/77
Fig.1  Characterization of SAPO-34 zeolites with different crystal diameters. SEM images of (A) dm = 26.4 µm, (B) dm = 11.2 µm, (C) dm = 1.4 µm, and (D) SAPO-34 with hierarchical structures (deq = 0.2 µm); TEM images of (D) on a scale of (E) 0.5 µm and (F) 50 nm; and (G) the diameter distribution from (A) to (C)
Fig.2  Flow diagram and physical map of the equipment designed for the high-precision diffusion measurement. Adsorption amount is converted into pressure difference, measured with sensitive differential pressure sensor
Fig.3  Adsorption amount vs. time with the adsorbents being (A) ethane, and (B) propane on SAPO-34 zeolites
Fig.4  Diffusion velocity vs. coke percentage. The diffusion velocity is defined as the reciprocal of the time at which the diffusion reaches 99% of the equilibrium. Coke mass percentage was measured with TG-DSC
Diameter /µm Dc (Propane) /(10?15?m2·s?1) Dc (Ethane) /(10?15?m2·s?1)
26.4 11.97 299.20
11.2 6.24 92.93
1.4 0.19 2.15
0.2 0.04 0.04
Tab.1  Diffusion coefficients of propane and ethane in SAPO-34 zeolites with different diameters
Diameter /µm Kkc (Propane) /(10?10?m·s?1) Kkc (Ethane) /(10?10?m·s?1)
26.4 43.71 329.81
11.2 34.40 144.70
1.4 7.26 15.41
0.2 3.26 2.84
Tab.2  Surface diffusion coefficient
Fig.5  Relationship between diffusion coefficient and diameter, from traditional diffusion theory (left) and from surface diffusion theory (right)
Fig.6  Several SAPO-34 molecular sieves with different Thiele modulus and efficiency. Calculation is based on propane
1 Su D S, Wen  G, Wu S,  Peng F, Schlögl  R. Carbocatalysis in liquid-phase reactions. Angewandte Chemie International Edition, 2017, 56(4): 936–964
https://doi.org/10.1002/anie.201600906
2 Losch P, Pinar  A B, Willinger  M G, Soukup  K, Chavan S,  Vincent B,  Pale P, Louis  B. H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. Journal of Catalysis, 2017, 345: 11–23
https://doi.org/10.1016/j.jcat.2016.11.005
3 Liang T, Chen  J, Qin Z,  Li J, Wang  P, Wang S,  Wang G, Dong  M, Fan W,  Wang J. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting. ACS Catalysis, 2016, 6(11): 7311–7325
https://doi.org/10.1021/acscatal.6b01771
4 Fickel D W, Sabnis  K D, Li  L, Kulkarni N,  Winter L R,  Yan B, Chen  J G. Chloromethane to olefins over H-SAPO-34: Probing the hydrocarbon pool mechanism. Applied Catalysis A, General, 2016, 527: 146–151
https://doi.org/10.1016/j.apcata.2016.09.004
5 Li Y, Zhang  M, Wang D,  Wei F, Wang  Y. Differences in the methanol-to-olefins reaction catalyzed by SAPO-34 with dimethyl ether as reactant. Journal of Catalysis, 2014, 311: 281–287
https://doi.org/10.1016/j.jcat.2013.12.004
6 Li J, Wei  Y, Liu G,  Qi Y, Tian  P, Li B,  He Y, Liu  Z. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catalysis Today, 2011, 171(1): 221–228
https://doi.org/10.1016/j.cattod.2011.02.027
7 Sun X, Mueller  S, Shi H,  Haller G L,  Sanchez-Sanchez M,  van Veen A C,  Lercher J A. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. Journal of Catalysis, 2014, 314: 21–31
https://doi.org/10.1016/j.jcat.2014.03.013
8 Sun X, Mueller  S, Liu Y,  Shi H, Haller  G L, Sanchez-Sanchez  M, van Veen A C,  Lercher J A. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. Journal of Catalysis, 2014, 317: 185–197
https://doi.org/10.1016/j.jcat.2014.06.017
9 Ilias S, Bhan  A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2013, 3(1): 18–31
https://doi.org/10.1021/cs3006583
10 Zhou H, Wang  Y, Wei F,  Wang D, Wang  Z. Kinetics of the reactions of the light alkenes over SAPO-34. Applied Catalysis A, General, 2008, 348(1): 135–141
https://doi.org/10.1016/j.apcata.2008.06.033
11 Li M, Wang  Y, Bai L,  Chang N,  Nan G, Hu  D, Zhang Y,  Wei W. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process. Applied Catalysis A, General, 2017, 531: 203–211
https://doi.org/10.1016/j.apcata.2016.11.005
12 Wu X C, Abraha  M G, Anthony  R G. Methanol conversion on SAPO-34: Reaction condition for fixed-bed reactor. Applied Catalysis A, General, 2004, 260(1): 63–69
https://doi.org/10.1016/j.apcata.2003.10.011
13 Wei Y, Li  J, Yuan C,  Xu S, Zhou  Y, Chen J,  Wang Q, Zhang  Q, Liu Z. Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol. Chemical Communications, 2012, 48(25): 3082
https://doi.org/10.1039/c2cc17676a
14 Li Y, Huang  Y, Guo J,  Zhang M,  Wang D, Wei  F, Wang Y. Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins. Catalysis Today, 2014, 233: 2–7
https://doi.org/10.1016/j.cattod.2014.03.038
15 Wei Z, Chen  Y, Li J,  Wang P, Jing  B, He Y,  Dong M, Jiao  H, Qin Z,  Wang J, et al.. Methane formation mechanism in the initial methanol-to-olefins process catalyzed by SAPO-34. Catalysis Science & Technology, 2016, 6(14): 5526–5533
https://doi.org/10.1039/C6CY00506C
16 Xu S, Zheng  A, Wei Y,  Chen J, Li  J, Chu Y,  Zhang M,  Wang Q, Zhou  Y, Wang J, et al.. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angewandte Chemie International Edition, 2013, 52(44): 11564–11568
https://doi.org/10.1002/anie.201303586
17 Qi L, Li  J, Wei Y,  Xu L, Liu  Z. Role of naphthalene during the induction period of methanol conversion on HZSM-5 zeolite. Catalysis Science & Technology, 2016, 6(11): 3737–3744
https://doi.org/10.1039/C5CY02238J
18 Wei Y, Yuan  C, Li J,  Xu S, Zhou  Y, Chen J,  Wang Q, Xu  L, Qi Y,  Zhang Q,  Liu Z. Coke formation and carbon atom economy of methanol-to-olefins reaction. ChemSusChem, 2012, 5(5): 906–912
https://doi.org/10.1002/cssc.201100528
19 Tian P, Wei  Y, Ye M,  Liu Z. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catalysis, 2015, 5(3): 1922–1938
https://doi.org/10.1021/acscatal.5b00007
20 Chen D, Rebo  H P, Moljord  K, Holmen A. Methanol conversion to light olefins over SAPO-34. Sorption, diffusion, and catalytic reactions. Industrial & Engineering Chemistry Research, 1999, 38(11): 4241–4249
https://doi.org/10.1021/ie9807046
21 Aguayo A T, Del Campo  A, Gayubo A G,  Tarrio A,  Bilbao J. Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1999, 74(4): 315–321
https://doi.org/10.1002/(SICI)1097-4660(199904)74:4<315::AID-JCTB34>3.0.CO;2-G
22 Hwang A, Prieto-Centurion  D, Bhan A. Isotopic tracer studies of methanol-to-olefins conversion over HSAPO-34: The role of the olefins-based catalytic cycle. Journal of Catalysis, 2016, 337: 52–56
https://doi.org/10.1016/j.jcat.2016.01.021
23 Yang G, Wei  Y, Xu S,  Chen J, Li  J, Liu Z,  Yu J, Xu  R. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. Journal of Physical Chemistry C, 2013, 117(16): 8214–8222
https://doi.org/10.1021/jp312857p
24 Zhu W, Kapteijn  F, Moulijn J A,  den Exter M C,  Jansen J C. Shape selectivity in adsorption on the all-silica DD3R. Langmuir, 2000, 16(7): 3322–3329
https://doi.org/10.1021/la9914007
25 Olson D H, Camblor  M A, Villaescusa  L A, Kuehl  G H. Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 2004, 67(1): 27–33
https://doi.org/10.1016/j.micromeso.2003.09.025
26 Cui Y, Zhang  Q, He J,  Wang Y, Wei  F. Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology, 2013, 11(4): 468–474
https://doi.org/10.1016/j.partic.2012.12.009
27 Bhatia S K, Perlmutter  D D. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE Journal. American Institute of Chemical Engineers, 1981, 27(2): 247–254
https://doi.org/10.1002/aic.690270211
28 Thiele E W. Relation between catalytic activity and size of particle. Industrial & Engineering Chemistry, 1939, 31(7): 916–920
https://doi.org/10.1021/ie50355a027
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed