Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (1) : 140-151    https://doi.org/10.1007/s11705-018-1714-y
RESEARCH ARTICLE
Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production
Qing Li1, Yingjie Qin1,2(), Yunfei Liu1, Jianjun Liu1, Qing Liu1, Pingli Li1, Liqiang Liu2
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Chembrane Engineering & Technology, Inc., Tianjin 300308, China
 Download: PDF(617 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Environmental and energy concerns have increased interest in renewable energy sources, particularly biofuels. Thus the fermentation of glucose from sulfuric acid-hydrolyzed corn stover for the production of bioethanol has been explored using a combined acid retardation and continuous-effect membrane distillation treatment process. This process resulted in the separation of the sugars and acids from the acid-catalyzed hydrolysate, the removal of most of the fermentation inhibitors from the hydrolysate and the concentration of the detoxified hydrolysate. The recovery rate of glucose from the sugar-acid mixture using acid retardation was greater than 99.12% and the sulfuric acid was completely recovered from the hydrolysate. When the treated corn stover hydrolysate, containing 100 g/L glucose, was used as a carbon source, 43.06 g/L of ethanol was produced with a productivity of 1.79 g/(L∙h) and a yield of 86.31%. In the control experiment, where glucose was used as the carbon source these values were 1.97 g/(L∙h) and 93.10% respectively. Thus the integration of acid retardation and a continuous-effect membrane distillation process are effective for the production of fuel ethanol from corn stover.

Keywords corn stover      hydrolysate      acid retardation      continuous-effect membrane distillation      ethanol fermentation     
Corresponding Author(s): Yingjie Qin   
Just Accepted Date: 02 March 2018   Online First Date: 22 May 2018    Issue Date: 25 February 2019
 Cite this article:   
Qing Li,Yingjie Qin,Yunfei Liu, et al. Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production[J]. Front. Chem. Sci. Eng., 2019, 13(1): 140-151.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1714-y
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I1/140
Fig.1  The schematic for converting corn stover to bioethanol and other chemicals
Fig.2  Apparatus for continuous-effect membrane distillation
Feed Glucose /(g?L−1) Sulfuric acid /wt-% R Rs /% Ra /%
Feed Eluent Feed Eluent
CSH 38.48 20.96 20.00 4.98 1.56 99.12 98.92
GSS 38.48 21.93 20.00 5.16 1.58 99.16 99.01
Tab.1  Sugar-acid separation performance of CSH and GSS by acid retardation
Fig.3  Sugar-acid separation by acid retardation: (a) CSH; (b) GSS
Substance Non-detoxified CSH /(g?L−1) Sugar eluent /(g?L−1) Removal rate /% Concentrated sugar solution /(g?L−1)
Glucose 38.479 20.956 NAa) 103.215
Total organic acids 4.678 NDb) 100 ND
Formic acid 3.483 ND 100 ND
Acetic acid 0.310 ND 100 ND
Levulinic acid 0.885 ND 100 ND
Furfural 0.003 ND 100 ND
5-HMF 0.164 ND 100 ND
Phenols 0.097 0.004 92.495 0.019
Sugar yield (%) NA 99.124 NA 100
Tab.2  Compositions of non-detoxified CSH and sugar eluent after acid retardation and concentrated sugar solution after CEMD
Fig.4  Variation of J, GOR, Rg, and glucose concentration during CEMD for concentrating sugar eluent. Experiment conditions: Tc,i = 35 °C, Th,i = 98 °C, Ff = 25 L/h
Fig.5  Variation of J, GOR, and sulfuric acid concentration during CEMD for concentrating acid eluent. Experiment conditions: Tc,i = 35 °C, Th,i = 98 °C, Ff = 25 L/h
Substance Acid eluent /(g?L−1) Concentrated acid solution /(g?L−1) Highly concentrated acid solution /(g?L−1)
Formic acid 0.867 0.966 0.210
Acetic acid 0.077 0.064 0.016
Levulinic acid 0.220 0.874 0.105
Furfural ND 0.003 ND
5-HMF 0.041 0.059 0.012
Phenols 0.022 0.187 0.015
Tab.3  Concentration of inhibitors in acid eluent, concentrated acid solution and highly concentrated acid solution
Fig.6  (a) Glucose concentration; (b) ethanol yield; (c) ethanol concentration; and (d) ethanol productivity as a function of time for various initial glucose concentrations. Fermentation conditions: temperature, 30 °C; agitation rate, 150 r/min; initial pH, 5.0; inoculum size, 10%
Fig.7  Ethanol concentration, productivity, yield, and glucose utilization rate for a 24-h fermentation with different: (a) temperature, (b) agitation rate, (c) initial pH, and (d) inoculum size. Fermentation conditions: initial glucose concentration, 100 g/L; temperature, 30 °C; agitation rate, 150 r/min; initial pH, 5.0; inoculum size, 10%
No. Temperature A Inoculum size B Agitation rate C pH D Ethanol yield /%
1 1 (25 °C) 1 (5%) 1 (125 r/min) 1 (4.5) 75.232
2 1 (25 °C) 2 (10%) 2 (150 r/min) 2 (5.0) 86.201
3 1 (25 °C) 3 (15%) 3 (175 r/min) 3 (5.5) 83.434
4 2 (30 °C) 1 (5%) 3 (175 r/min) 2 (5.0) 91.943
5 2 (30 °C) 2 (10%) 1 (125 r/min) 3 (5.5) 90.566
6 2 (30 °C) 3 (15%) 2 (150 r/min) 1 (4.5) 92.611
7 3 (35 °C) 1 (5%) 2 (150 r/min) 3 (5.5) 81.931
8 3 (35 °C) 2 (10%) 3 (175 r/min) 1 (4.5) 86.810
9 3 (35 °C) 3 (15%) 1 (125 r/min) 2 (5.0) 86.723
K1 244.867 249.107 252.521 254.654 NA
K2 275.121 263.577 260.743 264.868 NA
K3 255.465 262.768 262.188 255.931 NA
k1 81.622 83.036 84.174 84.885 NA
k2 91.707 87.859 86.914 88.289 NA
k3 85.155 87.590 87.399 85.310 NA
R 10.085 4.824 3.222 3.405 NA
Q A2 B2 C3 D2 NA
Tab.4  Orthogonal design of ethanol fermentation conditions
Experiment Initial glucose /(g?L−1) Residual glucose /(g?L−1) Ethanol concentration/(g?L−1) Ethanol productivity /g?(L·h) −1 Ethanol yield /%
Control (glucose) 100.0 0.406 47.289 1.970 93.102
Detoxified and concentrated CSH 100.0 2.175 43.061 1.794 86.311
Tab.5  Fermentation of detoxified and concentrated CSH using Saccharomyces cerevisiae CICC 1308
Fig.8  Ethanol concentration, productivity, yield and glucose concentration for ethanol fermentation of: (a) glucose, (b) hydrolysate. Fermentation conditions: initial glucose concentration, 100 g/L; temperature, 30 °C; agitation rate, 175 r/min; initial pH, 5.0; inoculum size, 10%
Strain Substrate Mode Sugar /(g?L −1) Ethanol yield /% Ref.
S. cerevisiae VTTB-08014 Spruce Batch 43.3 74.3 9
Birch 41.8 64.7
S. cerevisiae Corn stover SHFa) NMb) 67.4 35
S. cerevisiae Palm fronds SHF NM 83.5 36
Eucalyptus chips 71.4
S. cerevisiae CICC 1308 Corn stover Batch 100 86.3 This study
Tab.6  Ethanol produced from different types of substrates by various microorganisms
1 IKim, Y H Seo, G Y Kim, J I Han. Co-production of bioethanol and biodiesel from corn stover pretreated with nitric acid. Fuel, 2015, 143: 285–289
https://doi.org/10.1016/j.fuel.2014.11.031
2 RKoppram, F Nielsen, EAlbers, ALambert, SWaennstroem, LWelin, GZacchi, LOlsson. Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnology for Biofuels, 2013, 6(1): 2
https://doi.org/10.1186/1754-6834-6-2
3 OKarin, R Andreas, GMats, ZGuido. Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass and Bioenergy, 2006, 30(10): 863–869
https://doi.org/10.1016/j.biombioe.2006.02.002
4 JZaldivar, J Nielsen, LOlsson. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology, 2001, 56(1-2): 17–34
https://doi.org/10.1007/s002530100624
5 M PTaylor, I Mulako, MTuffin, DCowan. Understanding physiological responses to pretreatment inhibitors in ethanologenic fermentations. Journal of Biotechnology, 2012, 7(9): 1169–1181
https://doi.org/10.1002/biot.201100335
6 JMingjie, W L Ming, B Venkatesh, E DBruce. Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresource Technology, 2010, 101(21): 8171–8178
https://doi.org/10.1016/j.biortech.2010.06.026
7 L PYomano, S W York, K T Shanmugam, L O Ingram. Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnology Letters, 2009, 31(9): 1389–1398
https://doi.org/10.1007/s10529-009-0011-8
8 RHuang, R Su. Qi W, Zhang M, He Z. Fractionation of lignocellulose by formic acid pretreatment. Chinese Journal of Process Engineering, 2008, 8(6): 1103–1107
9 JHeinonen, A Tamminen, JUusitalo, TSainio. Ethanol production from wood via concentrated acid hydrolysis, chromatographic separation, and fermentation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2012, 87(5): 689–696
https://doi.org/10.1002/jctb.2766
10 S TMoe, K K Janga, T Hertzberg, M BHagg, KOeyaas, NDyrset. Saccharification of lignocellulosic biomass for biofuel and biorefinery applications—a renaissance for the concentrated acid hydrolysis? Energy Procedia, 2012, 20: 50–58
https://doi.org/10.1016/j.egypro.2012.03.007
11 LWang, H Chen. Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochemistry, 2011, 46(2): 604–607
https://doi.org/10.1016/j.procbio.2010.09.027
12 AMartinez, M E Rodriguez, M L Wells, S W York, J F Preston, L O Ingram. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress, 2001, 17(2): 287–293
https://doi.org/10.1021/bp0001720
13 TSainio, I Turku, JHeinonen. Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass. Bioresource Technology, 2011, 102(10): 6048–6057
https://doi.org/10.1016/j.biortech.2011.02.107
14 D HCho, Y J Lee, Y Um, B ISang, Y HKim. Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Applied Microbiology and Biotechnology, 2009, 83(6): 1035–1043
https://doi.org/10.1007/s00253-009-1925-8
15 RPurwadi, C Niklasson, M JTaherzadeh. Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. Journal of Biotechnology, 2004, 114(1-2): 187–198
https://doi.org/10.1016/j.jbiotec.2004.07.006
16 S RNanguneri, R DHester. Acid/sugar separation using ion exclusion resins: A process analysis and design. Separation Science and Technology, 1990, 25(13-15): 1829–1842
https://doi.org/10.1080/01496399008050427
17 R PNeuman, S R Rudge, M R Ladisch. Sulfuric acid-sugar separation by ion exclusion. Reactive Polymers, Ion Exchangers. Sorbents, 1987, 5(1): 55–61
18 M JHatch, J A Dillon. Acid retardation: Simple physical method for separation of strong acids from their salts. Industrial & Engineering Chemistry Process Design and Development, 1963, 2(4): 253–263
https://doi.org/10.1021/i260008a001
19 JLiu, Y Qin, PLi, KZhang, QLiu, L Liu. Separation of the acid-sugar mixtures by using acid retardation and further concentration of the eluents by using continuous-effect membrane distillation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(4): 1105–1112
https://doi.org/10.1002/jctb.4692
20 JChen, Y Zhang, YWang, XJi, L Zhang, XMi, HHuang. Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation. Bioresource Technology, 2013, 144: 680–683
https://doi.org/10.1016/j.biortech.2013.07.021
21 KYao, Y Qin, YYuan, LLiu, F He, YWu. A continuous-effect membrane distillation process based on hollow fiber AGMD module with internal latent-heat recovery. AIChE Journal, 2013, 59(4): 1278–1297
https://doi.org/10.1002/aic.13892
22 WYang, P Li, DBo, HChang, XWang, T Zhu. Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system. Bioresource Technology, 2013, 133: 361–369
https://doi.org/10.1016/j.biortech.2013.01.127
23 KZhang, Y Qin, FHe, JLiu, Y Zhang, LLiu. Concentration of aqueous glycerol solution by using continuous-effect membrane distillation. Separation and Purification Technology, 2015, 144: 186–196
https://doi.org/10.1016/j.seppur.2015.02.034
24 JLiu. The research of key points on biobutanol production using corn stover. Dissertation for the Doctoral Degree. Tianjin: Tianjin University, 2015, 64–76
25 ASeidel-Morgenstern, MSchulte, AEpping. Fundamentals and General Terminology, in Preparative Chromatography. Weinheim: Wiley-VCH Verlag, 2012, 7–46
26 T AClark, K L Mackie. Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1984, 34B(2): 101–110
27 B PGrassmanned, E B HSawisto. Physical principles of chemical engineering. Oxford: Pergamon Press, 1971
28 J BAlmeida e Silva, U ALima, M E STaqueda, F GGuaragna. Use of response surface methodology for selection of nutrient levels for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolyzate. Bioresource Technology, 2003, 87(1): 45–50
https://doi.org/10.1016/S0960-8524(02)00199-2
29 G JYue. An introduction to cellulosic ethanol engineering. Beijing: Chemical Industry Press, 2014, 5–29 (in Chinese)
30 L NSierkstra, H H WSilljé, J M AVerbakel, C TVerrips. The glucose-6 phosphate isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. FEBS Journal, 1993, 214(1): 121–127
31 BMaiorella, H W Blanch, C R Wilke. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 1983, 25(1): 103–121
https://doi.org/10.1002/bit.260250109
32 M JTorija, N Rozes, MPoblet, J MGuillamon, AMas. Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. International Journal of Food Microbiology, 2003, 80(1): 47–53
https://doi.org/10.1016/S0168-1605(02)00144-7
33 MPhisalaphong, N Srirattana, WTanthapanichakoon. Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochemical Engineering Journal, 2006, 28(1): 36–43
https://doi.org/10.1016/j.bej.2005.08.039
34 K CZhang. Alcohol and Distilling Wine Craft. Beijing: China Light Industry Press, 1995, 246–247 (in Chinese)
35 L YCai, Y L Ma, X X Ma, J M Lv. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments. Bioresource Technology, 2016, 212: 42–46
https://doi.org/10.1016/j.biortech.2016.04.012
36 YMessaoudi, N Smichi, FBouachir, MGargouri. Fractionation and biotransformation of lignocelluloses-based wastes for bioethanol, xylose and vanillin production. Waste and Biomass Valorization, 2017,
[1] Hua ZHANG, Hongji ZHU, Shipeng WANG, Weihua WANG. Investigation of hydrolysis conditions and properties on protein hydrolysates from flatfish skin[J]. Front Chem Sci Eng, 2013, 7(3): 303-311.
[2] Hongman ZHANG, Qiang JIN, Rui XU, Lishi YAN, Zengxiang LIN. Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor[J]. Front Chem Sci Eng, 2011, 5(2): 252-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed