Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 467-472    https://doi.org/10.1007/s11705-018-1717-8
COMMUNICATION
Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions
Yuyao Ji1, Min Ma2, Xuqiang Ji2, Xiaoli Xiong1,3(), Xuping Sun2()
1. College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
2. College of Chemistry, Sichuan University, Chengdu 610064, China
3. Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin 644000, China
 Download: PDF(286 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

It is highly attractive but still remains a great challenge to develop an efficient electrocatalyst for oxygen evolution reaction under nearly neutral conditions. In this work, we report the transformation of Ni3S2 nanowire array on nickel foam into the amorphous nickel carbonate nanowire array on nickel foam (NiCO3/NF). The resulting NiCO3/NF shows high electrocatalytic activity towards water oxidation and affords current density of 50 mA·cm−2 at overpotential of 395 mV in 1.0 mol·L−1 KHCO3. Moreover, this NiCO3/NF is also durable with a long-term electrochemical durability of 60 h. This catalyst electrode achieves a high turnover frequency of 0.21 mol O2·s−1 at the overpotential of 500 mV.

Keywords water oxidation      NiCO3/NF      nearly neutral conditions      superior activity      electocatalyst     
Corresponding Author(s): Xiaoli Xiong,Xuping Sun   
Just Accepted Date: 02 March 2018   Online First Date: 07 June 2018    Issue Date: 18 September 2018
 Cite this article:   
Yuyao Ji,Min Ma,Xuqiang Ji, et al. Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions[J]. Front. Chem. Sci. Eng., 2018, 12(3): 467-472.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1717-8
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/467
Fig.1  (a) Typical XRD patterns for Ni3S2 with reference to the standard diffractions; (b) SEM images for Ni3S2 and (c) NiCO3 HRTEM images taken from (d) Ni3S2 and (e) NiCO3; (f) EDX elemental mapping images of Ni, O, C elements for NiCO3
Fig.2  (a) XPS survey spectrum for NiCO3; (b) Ni 2p spectrum; (c) C 1s spectrum and (d) O 1s spectrum
Fig.3  (a) LSV curves for Ni3S2/NF, NF, NiCO3/NF, and RuO2/NF with a scan rate of 5 mV?s?1; (b) tafel slope of Ni3S2/NF, NiCO3/NF, and NF; (c) multi-current process of NiCO3/NF; (d) time-dependent current density curve recorded at fixed overpotential of 450 mV without iR correction
Fig.4  CVs of (a) Ni3S2/NF and (b) NiCO3/NF at different scan rates (from inner to outer 20, 60, 100, 140 and 180 mV?s?1). Corresponding capacitive currents at 0.09 V vs. SCE as a function of scan rates for (c) Ni3S2/NF and (d) NiCO3/NF
1 Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical Reviews, 2010, 110(11): 6474–6502
https://doi.org/10.1021/cr100246c
2 Service R F. Hydrogen cars: Fad or the future? Science, 2009, 324(5932): 1257–1259
https://doi.org/10.1126/science.324_1257
3 Lin F, Boettcher S W. Adaptive semiconductor/eElectrocatalyst junctions in water-splitting photoanodes. Nature Materials, 2014, 13(1): 81–86
https://doi.org/10.1038/nmat3811
4 Walter M G, Warren E L, Mckone J R, Boettcher S W, Mi Q, Santori E S, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326
5 Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180
https://doi.org/10.1039/C4CS00448E
6 Lu X, Gu L, Wang J, Wu J, Liao P, Li G. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Advanced Materials, 2017, 29(3): 1604437
https://doi.org/10.1002/adma.201604437
7 Feng J, Ye S, Xu H, Tong Y, Li G. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Advanced Materials, 2016, 28(23): 4698–4703
https://doi.org/10.1002/adma.201600054
8 Feng J, Xu H, Dong Y, Ye S, Tong Y, Li G. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(11): 3694–3698
https://doi.org/10.1002/anie.201511447
9 Hong W, Risch M, Stoerzinger K A, Grimaud A, Suntivich J, Shao-Horn Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science, 2015, 8(5): 1404–1427
https://doi.org/10.1039/C4EE03869J
10 Yin Q, Tan J M, Besson C, Geletii Y V, Musaev D G, Kuznetsov A E, Luo Z, Hardcastle K I, Hill C L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science, 2010, 328(5976): 342–345
https://doi.org/10.1126/science.1185372
11 Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334(6061): 1383–1385
https://doi.org/10.1126/science.1212858
12 Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Advanced Materials, 2016, 28(42): 9266–9291
https://doi.org/10.1002/adma.201602270
13 Zhong H, Wang J, Meng F, Zhang X. In situ activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes. Angewandte Chemie, 2016, 128(20): 10091–10095
https://doi.org/10.1002/ange.201604040
14 Zhong H, Li K, Zhang Q, Wang J, Meng F, Wu Z, Yan J, Zhang X. In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Materials, 2016, 8(132): e308
https://doi.org/10.1038/am.2016.132
15 Le Goff A, Artero V, Jousselme B, Tran P D, Guillet N, Métayé R, Fihri A, Palacin S, Fontecave M. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science, 2009, 326(5958): 1384–1387
https://doi.org/10.1126/science.1179773
16 Leroy R L. Industrial water electrolysis: Present and future. International Journal of Hydrogen Energy, 1983, 8(83): 401417
17 Liang H, Meng F, Cabán-Acevedo M, Li L, Forticaux A, Xiu L, Wang Z, Jin S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Letters, 2015, 15(2): 1421–1427
https://doi.org/10.1021/nl504872s
18 Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072–1075
https://doi.org/10.1126/science.1162018
19 McAlpin J G, Surendranath Y, Dinca M, Stich T A, Stoian S A, Casey W H, Nocera D G, Britt R D. EPR evidence for Co(IV) species produced during water oxidation at neutral pH. Journal of the American Chemical Society, 2010, 132(20): 6882–6883
https://doi.org/10.1021/ja1013344
20 Esswein A J, Surendranath Y, Reece S Y, Nocera D G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutrual and natural waters. Energy & Environmental Science, 2011, 4(2): 499–504
https://doi.org/10.1039/C0EE00518E
21 Wang W, Liu D, Hao S, Qu F, Ma Y, Du G, Asiri A M, Yao Y, Sun X. High-efficiency and durable water oxidation under mild pH conditions: An iron phosphate-borate nanosheet array as a non-noble-metal catalyst electrode. Inorganic Chemistry, 2017, 56(6): 3131–3135
https://doi.org/10.1021/acs.inorgchem.6b03171
22 Surendranath Y, Kanan M W, Nocera D G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. Journal of the American Chemical Society, 2010, 132(46): 16501–16509
https://doi.org/10.1021/ja106102b
23 Kanan M W, Yano J, Surendranath Y, Dincă M, Yachandra V K, Nocera D G. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-Ray spectroscopy. Journal of the American Chemical Society, 2010, 132(46): 13692–13701
https://doi.org/10.1021/ja1023767
24 Smith A M, Trotochaud L, Burke M S, Boettcher S W. Trotochaud Lena, Burke M S, Boettcher S W. Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chemical Communications (Cambridge), 2015, 51(25): 5261–5263
https://doi.org/10.1039/C4CC08670H
25 Dincă M, Surendranath Y, Nocera D G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10337–10341
https://doi.org/10.1073/pnas.1001859107
26 Bediako D K, Costentin C, Jones E C, Nocera D G, Savéant J M. Proton-electron transport and transfer in electrocatalytic films. Application to a cobalt-based O2-evolution catalyst. Journal of the American Chemical Society, 2013, 135(28): 10492–10502
https://doi.org/10.1021/ja403656w
27 Bediako D K, Surendranath Y, Nocera D G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. Journal of the American Chemical Society, 2013, 135(9): 3662–3674
https://doi.org/10.1021/ja3126432
28 Yang L, Xie L, Ge R, Kong R, Liu Z, Asiri A M. Core-shell NiFe-LDH@NiFe-Bi nanoarray: In situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media. ACS Applied Materials & Interfaces, 2017, 9(23): 19502–19506
https://doi.org/10.1021/acsami.7b01637
29 Kurosu H, Yoshida M, Mastectomy Y, Onishi S, Abe H, Kondoh H.In situ observations of oxygen evolution cocatalysts on photoelectrodes by X-ray absorption spectroscopy: Comparison between cobalt-phosphate and cobalt-borate. Electrochemistry, 2016, 10(84): 779–783
https://doi.org/10.5796/electrochemistry.84.779
30 Joya K S, de Takanabe K, Groot H J M. Surface generation of a cobalt-derived water oxidation electrocatalyst developed in a neutral HCO3-/CO2 system. Advanced Energy Materials, 2014, 4(16): 1400252
https://doi.org/10.1002/aenm.201400252
31 Xie F, Wu H, Mou J, Lin D, Xu C, Wu C, Sun X. Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172
https://doi.org/10.1016/j.jcat.2017.10.013
32 Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072–1075
https://doi.org/10.1126/science.1162018
33 Chen W, Wang H, Li Y, Lee J S, Cui Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. American Chemical Society Central Science, 2015, 1(5): 244–251
34 Ren Z, Botu V, Wang S, Meng Y, Song W, Guo Y, Ramprasad S, Gao P, Suib S L. Monolithically integrated spinel MxCo3XO4 (M= Co, Ni, Zn) nanoarray catalysts: Scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation? Angewandte Chemie International Edition, 2014, 53(160): 7223–7227
https://doi.org/10.1002/anie.201403461
35 Kibsgaard J, Chen Z, Reinecke B N, Jaramilo T F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials, 2012, 11(11): 963–969
https://doi.org/10.1038/nmat3439
36 Wang J, Ma M, Qu F, Asiri A M, Sun X. Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation. Inorganic Chemistry, 2017, 56(3): 1041–1044
https://doi.org/10.1021/acs.inorgchem.6b02808
37 He C, Wu X, He Z. Amorphous nickel-based thin film as a janus electrocatalyst for water splitting. Journal of Physical Chemistry C, 2014, 118(9): 4578–4584
https://doi.org/10.1021/jp408153b
38 Zhu Y, Liu Y, Ren T, Yuan Z. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347
https://doi.org/10.1002/adfm.201503666
39 Meng F, Wang Z, Zhong H, Wang J, Yan J, Zhang B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Advanced Materials, 2016, 28(36): 7948–7955
https://doi.org/10.1002/adma.201602490
40 Xie M, Yang L, Ji Y, Wang Z, Ren X, Liu Z, Asiri A M, Xiong X, Sun X. An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolyte. Nanoscale, 2017, 9(43): 16612–16615
https://doi.org/10.1039/C7NR07269D
[1] FCE-17061-OF-JY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed