|
|
Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation |
Lijuan Qiu1,2, Ruiyang Zhang2, Ying Zhang2, Chengjin Li2, Qian Zhang2, Ying Zhou1,2( ) |
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 2. The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China |
|
|
Abstract Water pollution has become an urgent issue for our modern society, and it is highly desirable to rapidly deal with the water pollution without secondary pollution. In this paper, we have prepared a reduced graphene oxide (RGO) wrapped sponge with superhydrophobicity and mechanically flexibility via a facile low-temperature thermal treatment method under a reducing atmosphere. The skeleton of this sponge is completely covered with RGO layers which are closely linked to the skeleton. This sponge has an abundant pore structure, high selectivity, good recyclability, low cost, and outstanding adsorption capacity for floating oil or heavy oil underwater. In addition, this sponge can maintain excellent adsorption performance for various oils and organic solvents over 50 cycles by squeezing, and exhibits extremely high separation efficiencies, up to 6 × 106 and 3.6 × 106 L·m−3·h−1 in non-turbulent and turbulent water/oil systems, respectively. This superhydrophobic adsorbent with attractive properties may find various applications, especially in large-scale removal of organic contaminants and oil spill cleanup.
|
Keywords
superhydrophobicity
mechanically flexibility
water/oil separation
reduced graphene oxide wrapped sponge
|
Corresponding Author(s):
Ying Zhou
|
Just Accepted Date: 13 June 2018
Online First Date: 06 September 2018
Issue Date: 18 September 2018
|
|
1 |
Schrope M. Oil spill: Deep wounds. Nature, 2011, 472(7342): 152–154
https://doi.org/10.1038/472152a
pmid: 21490648
|
2 |
Joye S B. MARINE SCIENCE. Deepwater Horizon, 5 years on. Science, 2015, 349(6248): 592–593
https://doi.org/10.1126/science.aab4133
pmid: 26250675
|
3 |
Ivshina I B, Kuyukina M S, Krivoruchko A V, Elkin A A, Makarov S O, Cunningham C J, Peshkur T A, Atlas R M, Philp J C. Oil spill problems and sustainable response strategies through new technologies. Environmental Science. Processes & Impacts, 2015, 17(7): 1201–1219
https://doi.org/10.1039/C5EM00070J
pmid: 26089295
|
4 |
Gupta S, Tai N H. Carbon materials as oil sorbents: A review on the synthesis and performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(5): 1550–1565
https://doi.org/10.1039/C5TA08321D
|
5 |
Sun Y R, Yang M X, Yu F, Chen J H, Ma J. Synthesis of graphene aerogel adsorbents and their applications in water treatment. Progress in Chemistry, 2015, 27(8): 1133–1146
|
6 |
Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Advanced Materials, 2013, 25(18): 2554–2560
https://doi.org/10.1002/adma.201204576
pmid: 23418099
|
7 |
Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Ultralight and highly compressible graphene aerogels. Advanced Materials, 2013, 25(15): 2219–2223
https://doi.org/10.1002/adma.201204530
pmid: 23418081
|
8 |
Wan W C, Lin Y H, Prakash A, Zhou Y. Three-dimensional carbon-based architectures for oil remediation: From synthesis and modification to functionalization. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(48): 18687–18705
https://doi.org/10.1039/C6TA07211A
|
9 |
Xu L M, Xiao G Y, Chen C B, Li R, Mai Y Y, Sun G M, Yan D Y. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(14): 7498–7504
https://doi.org/10.1039/C5TA00383K
|
10 |
Li J, Kang R, Tang X, She H, Yang Y, Zha F. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale, 2016, 8(14): 7638–7645
https://doi.org/10.1039/C6NR01298A
pmid: 26987990
|
11 |
Xiao J L, Zhang J F, Lv W Y, Song Y H, Zheng Q. Multifunctional graphene/poly (vinyl alcohol) aerogels: In situ hydrothermal preparation and applications in broad-spectrum adsorption for dyes and oils. Carbon, 2017, 123: 354–363
https://doi.org/10.1016/j.carbon.2017.07.049
|
12 |
Wu C, Huang X, Wu X, Qian R, Jiang P. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Advanced Materials, 2013, 25(39): 5658–5662
https://doi.org/10.1002/adma.201302406
pmid: 23913816
|
13 |
Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4(7): 4324–4330
https://doi.org/10.1021/nn101187z
pmid: 20590149
|
14 |
Kuang J, Dai Z, Liu L, Yang Z, Jin M, Zhang Z. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 2015, 7(20): 9252–9260
https://doi.org/10.1039/C5NR00841G
pmid: 25932597
|
15 |
He Y L, Li J H, Luo K, Li L F, Chen J B, Li J Y. Engineering reduced graphene oxide aerogel produced by effective g-ray radiation-induced self-assembly and its application for continuous oil-water separation. Industrial & Engineering Chemistry Research, 2016, 55(13): 3775–3781
https://doi.org/10.1021/acs.iecr.6b00073
|
16 |
Dong X, Chen J, Ma Y, Wang J, Chan-Park M B, Liu X, Wang L, Huang W, Chen P. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chemical Communications, 2012, 48(86): 10660–10662
https://doi.org/10.1039/c2cc35844a
pmid: 23001335
|
17 |
Li R, Chen C B, Li J, Xu L M, Xiao G Y, Yan D Y. A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(9): 3057–3064
https://doi.org/10.1039/c3ta14262k
|
18 |
Cong H P, Ren X C, Wang P, Yu S H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano, 2012, 6(3): 2693–2703
https://doi.org/10.1021/nn300082k
pmid: 22303866
|
19 |
Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, Ruoff R S, Sun L T. Highly enhanced performance of spongy graphene as an oil sorbent. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(6): 1652–1656
https://doi.org/10.1039/C3TA14112H
|
20 |
Pham V H, Dickerson J H. Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Applied Materials & Interfaces, 2014, 6(16): 14181–14188
https://doi.org/10.1021/am503503m
pmid: 25039789
|
21 |
Ji C H, Zhang K, Li L, Chen X X, Hu J L, Yan D Y, Xiao G Y, He X H. High performance graphene-based foam fabricated by a facile approach for oil absorption. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(22): 11263–11270
https://doi.org/10.1039/C7TA02613G
|
22 |
Wan W C, Zhang R Y, Li W, Liu H, Lin Y H, Li L N, Zhou Y. Graphene-carbon nanotube aerogel as an ultralight, compressible and recyclable highly efficient absorbent for oil and dyes. Environmental Science: Nano, 2016, 3(1): 107–113
https://doi.org/10.1039/C5EN00125K
|
23 |
Wan W C, Zhang F, Yu S, Zhang R Y, Zhou Y. Hydrothermal formation of graphene aerogel for oil sorption: The role of reducing agent, reaction time and temperature. New Journal of Chemistry, 2016, 40(4): 3040–3046
https://doi.org/10.1039/C5NJ03086B
|
24 |
Paredes J I, Villar-Rodil S, Martínez-Alonso A, Tascón J M D. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24(19): 10560–10564
https://doi.org/10.1021/la801744a
pmid: 18759411
|
25 |
Bosch-Navarro C, Coronado E, Martí-Gastaldo C, Sánchez-Royo J F, Gómez M G. Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale, 2012, 4(13): 3977–3982
https://doi.org/10.1039/c2nr30605k
pmid: 22653666
|
26 |
Stolz A, Floch S L, Reinert L, Ramos S M M, Tuaillon-Combes J, Soneda Y, Chaudet P, Baillis D, Blanchard N, Duclaux L, et al.. Melamine-derived carbon sponges for oil-water separation. Carbon, 2016, 107: 198–208
https://doi.org/10.1016/j.carbon.2016.05.059
|
27 |
Hang Z S, Tan L H, Ju F Y, Zhou B, Ying S J. Non-isothermal kinetic studies on the thermal decomposition of melamine by thermogravimetric analysis. Journal of Analytical Science, 2011, 27(3): 279–283
|
28 |
Cheng Y, Dong Y Y, Wu J H, Yang X R, Bai H, Zheng H Y, Ren D M, Zou Y D, Li M. Screening melamine adulterant in milk powder with laser Raman spectrometry. Journal of Food Composition and Analysis, 2010, 23(2): 199–202
https://doi.org/10.1016/j.jfca.2009.08.006
|
29 |
Yang D X, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A, Ventrice C A Jr, Ruoff R S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 2009, 47(1): 145–152
https://doi.org/10.1016/j.carbon.2008.09.045
|
30 |
Ge J, Shi L A, Wang Y C, Zhao H Y, Yao H B, Zhu Y B, Zhang Y, Zhu H W, Wu H A, Yu S H. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nature Nanotechnology, 2017, 12(5): 434–440
https://doi.org/10.1038/nnano.2017.33
pmid: 28369045
|
31 |
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565
https://doi.org/10.1016/j.carbon.2007.02.034
|
32 |
Wang Z T, Xiao C F, Zhao J, Hu X, Xu N K. Preparation of reduced graphene oxide-based melamine sponge and its absorption properties. Chemical Journal of Chinese Universities, 2014, 35: 2410–2417
|
33 |
Periasamy A P, Wu W P, Ravindranath R, Roy P, Lin G L, Chang H T. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery. Marine Pollution Bulletin, 2017, 114(2): 888–895
https://doi.org/10.1016/j.marpolbul.2016.11.005
pmid: 27863883
|
34 |
Ganguly A, Sharma S, Papakonstantinou P, Hamilton J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. Journal of Physical Chemistry C, 2011, 115(34): 17009–17019
https://doi.org/10.1021/jp203741y
|
35 |
Lei Z, Zhang G, Deng Y, Wang C. Thermoresponsive melamine sponges with switchable wettability by interface-initiated atom transfer radical polymerization for oil/water separation. ACS Applied Materials & Interfaces, 2017, 9(10): 8967–8974
https://doi.org/10.1021/acsami.6b14565
pmid: 28229584
|
36 |
Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano, 2011, 5(6): 4350–4358
https://doi.org/10.1021/nn103584t
pmid: 21574601
|
37 |
Ding Q, Song X, Yao X, Qi X, Au C T, Zhong W, Du Y. Large-scale and controllable synthesis of metal-free nitrogen-doped carbon nanofibers and nanocoils over water-soluble Na2CO3. Nanoscale Research Letters, 2013, 8(1): 545
https://doi.org/10.1186/1556-276X-8-545
pmid: 24369821
|
38 |
Kuang J, Liu L, Gao Y, Zhou D, Chen Z, Han B, Zhang Z. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale, 2013, 5(24): 12171–12177
https://doi.org/10.1039/c3nr03379a
pmid: 24142261
|
39 |
Yao H B, Huang G, Cui C H, Wang X H, Yu S H. Macroscale elastomeric conductors generated from hydrothermally synthesized metal-polymer hybrid nanocable sponges. Advanced Materials, 2011, 23(32): 3643–3647
https://doi.org/10.1002/adma.201102002
pmid: 21728194
|
40 |
Yu C L, Yu C M, Cui L Y, Song Z Y, Zhao X Y, Ma Y, Jiang L. Facile preparation of the porous PDMS oil-absorbent for oil/water separation. Advanced Materials Interfaces, 2017, 4(3): 1600862
https://doi.org/10.1002/admi.201600862
|
41 |
Qiu L J, Wan W C, Tong Z Q, Zhang R Y, Li L N, Zhou Y. Controllable and green synthesis of robust graphene aerogels with tunable surface properties for oil and dye adsorption. New Journal of Chemistry, 2018, 42(2): 1003–1009
https://doi.org/10.1039/C7NJ03329J
|
42 |
Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1–8
https://doi.org/10.1007/s004250050096
|
43 |
Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Polymer/graphene hybrid aerogel with high compressibility, conductivity, and “sticky” superhydrophobicity. ACS Applied Materials & Interfaces, 2014, 6(5): 3242–3249
https://doi.org/10.1021/am4050647
pmid: 24524309
|
44 |
Si Y, Fu Q, Wang X, Zhu J, Yu J, Sun G, Ding B. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano, 2015, 9(4): 3791–3799
https://doi.org/10.1021/nn506633b
pmid: 25853279
|
45 |
Kabiri S, Tran D N H, Altalhi T, Losic D. Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon, 2014, 80: 523–533
https://doi.org/10.1016/j.carbon.2014.08.092
|
46 |
Tran D N H, Kabiri S, Sim T R, Losic D. Selective adsorption of oil-water mixtures using polydimethylsiloxane (PDMS)-graphene sponges. Environmental Science: Water Research & Technology, 2015, 1(3): 298–305
https://doi.org/10.1039/C5EW00035A
|
47 |
Cao N, Yang B, Barras A, Szunerits S, Boukherroub R. Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation. Chemical Engineering Journal, 2017, 307: 319–325
https://doi.org/10.1016/j.cej.2016.08.105
|
48 |
Song S, Yang H, Su C P, Jiang Z B, Lu Z. Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities. Chemical Engineering Journal, 2016, 306: 504–511
https://doi.org/10.1016/j.cej.2016.07.086
|
49 |
Luo Y, Jiang S, Xiao Q, Chen C, Li B. Highly reusable and superhydrophobic spongy graphene aerogels for efficient oil/water separation. Scientific Reports, 2017, 7(1): 7162
https://doi.org/10.1038/s41598-017-07583-0
pmid: 28769065
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|